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Abstract

In this talk, I will talk about gloabl well-posded of Navier-Stokes equations describing the com-
pressible, baratoropic, viscous fluid flow in a three dimensional exterior domain with non-slip boundary
conditions.

Let Ω be a three dimensional exterior domain, that is the complement, Ωc, of Ω is a bounded
domain in the three dimensional Euclidean space R3. Let Γ be the boundary of Ω, which is a compact
C2 hypersurface. Let ρ = ρ(x, t) and v = (v1(x, t), v2(x, t), v3(x, t))> be respective the mass density
and the velocity field, where M> denotes the transposed M . Let p = p(ρ) be the fluid pressure, which
is a smooth function of ρ > 0 and satisfies the condition: p′(ρ) > 0 for ρ > 0. We consider the following
equations given in Euler coordinates:

∂tρ+ div (ρv) = 0 in Ω× (0, T ),

ρ(∂tv + v · ∇v)−Div (µD(v) + νdivvI− p(ρ)I) = 0 in Ω× (0, T ),

v|Γ = 0, (ρ,v)|t=0 = (ρ∗ + θ0,v0) in Ω.

(1)

Here, D(v) = ∇v + (∇v)> is the deformation tensor, divv =
∑3
j=1 ∂vj/∂xj , for a 3 × 3 matrix K

with (i, j) th component Kij , DivK = (
∑3
j=1 ∂K1j/∂xj ,

∑3
j=1 ∂K2j/∂xj ,

∑3
j=1 ∂K3j/∂xj)

>, µ and ν
are two viscous constants such that µ > 0 and µ+ ν > 0, and ρ∗ is a positive constant describing the
mass density of a reference body.

Matsumura and Nishida proved that H3
2 norm of initial data are small enough then solutions

ρ = ρ∗ + θ and v exists globally in time with

θ ∈ C0((0,∞), H3
2 (Ω)) ∩ C1((0,∞), H2

2 (Ω)), ∇ρ ∈ L2((0,∞), H2
2 (Ω)),

v ∈ C0((0,∞), H3
2 (Ω)) ∩ C1((0,∞), H1

2 (Ω)), ∇v ∈ L2((0,∞), ,H3
2 (Ω)).

Here, Hm
q = {v ∈ Lq | ∂αx v ∈ Lq(|α| ≤ `} and H0

q = Lq. In this talk, if H1
2 ∩ H1

6 norm of initial
density and H1

2 ∩B1
6,2 norm of inital velocity are small enough then solutions ρ = ρ∗ + θ and v of the

equations described in Lagrange coordinates exist globally in time with

θ ∈ H1
2 ((0,∞), H1

6 ), ∂tθ ∈ L2((0,∞), H1
2 ),∇θ ∈ L2((0,∞), L2), θ ∈ C0((0,∞), L2)

v ∈ H1
2 ((0,∞), L6) ∩ L2((0,∞), H2

6 ), ∂tv,∈ L2((0,∞), L2), ∇v ∈ L2((0,∞), H1
2 ),

v ∈ C0((0,∞), L2).

Main point of proof is to prove the maximal regularity with decay order of solutions to the linearized
equations. To explain how to obtain this, we write equations as ∂tu − Au = f and u|t=0 = u0

symbolically, where f is a function corresponding to nonlinear terms and A is an closed linear operator
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with domain D(A). We write u = u1+u2, where u1 is a solution to time shifted equations: ∂tu1+λ1u1−
Au1 = f and u1|t=0 = u0 with some large positive number λ1 and u2 is a solution to compensating
equations: ∂tu2−Au2 = λ1u1 and u2|t=0 = 0. Since the fundamental solutions to time shifted equations
have exponential decay properties in time, u1 has the same decay properties as these of nonlinear terms
f . Moreover u1 belongs to the domain of A for all positive time. By Duhamel principle u2 is given by
u2 = λ1

∫ t
0
T (t−s)u1(s) ds, where {T (t)}t≥0 is a continuous analytic semigroup associated with A. By

using Lp-Lq decay properties of {T (t)}t≥0 in the interval 0 < s < t− 1 and standard estimates of C0

analytic semigroup: ‖T (t−s)u0‖D(A) ≤ C‖u0‖D(A) for t−1 < s < t, where ‖ ·‖D(A) denotes a domain
norm, we obtain maximal Lp-Lq regularity of u2 with decay properties. This method seems to be a
new thought to prove the global wellposedness and to be applicable for many quasilinear problems of
parabolic type or parabolic-hyperbolic mixture type appearing in mathematical physics.

(1) Fluid dynamics

a) Conservation equations of fluid dynamics

b) Lagrange transformation

c) Matsumura-Nishida theory

(2) Maximal Lp-Lq regularity with decay estimate for parabolic and parabolic-hyperbolic systems.

a) R-bounded operator families and Weis operator valued Fourier multiplier theorem

b) R solution operators for the Stokes equations arising from the mathematical study of compressible,
barotropic, viscous flows

c) Lp-Lq decay estimates for the Stokes equations.
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