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Euler’s equations and free surface water waves

» Fluid domain (1) := {x e R y € (—h,n(x))},d = 2,3
» Incompressibility and irrotationality

V-u=0, VAu=0
therefore u = V¢ where

Ap=0

» On the solid bottom boundary of S(7)
N-u=0

» On the free surface I'(n) := {y = n(x)}

om = Oyp—0m- O
op = —gn—1Vel*,



Figure : Great waves off the Oregon coast



kinetic and potential energy

» The energy H of the system of equations is

n/(x) n(x)
K+P ::/ / é\u|2dydx+/ / gy dydx
d—1 d—1
—h R —h

n(x)
- /dl/h é]ch\zdydx+/Rd1 %nzdx—C,

» Rewrite the kinetic energy by integrating by parts

n(x) . 5 n(x) X
K = /{11 /h 3|Vl dydx——/]Rd1 /h >@Ap dydx

- /]Rdl %(‘ON - Vo dSbottom + /]Rdl %@N - Vo dSree surface

H

» Define £(x) := ¢(x, n(x)), the kinetic energy is therefore

K = [l‘%dl %fN - V© dStree surface = /Rdl %ﬁG(U)de

where G(7) is the Dirichlet — Neumann operator.



Dirichlet — Neumann operator

» The Dirichlet — Neumann operator
G(n)€(x) = (9y = Oun(x) - u)ep(x,(x)) = R(N - Vo) (x,7(x))

where R = /1 + |0,7|? is a normalization factor so that G(7)) is
self-adjoint on L*(dx).

» The Hamiltonian

H= [, 3e0me+ ot ds

Theorem (Zakharov (1968))

The pair of functions (1)(x), £(x)) are canonical variables for the
water waves problem in which it can be written in Darboux
coordinates, with Hamiltonian H (7, §).



Hamiltonian formulation

» Therefore the equations for water waves can be rewritten in
Darboux coordinates;

n = grad:H = G(n)§ ¢))
é = —grad,H = —gn — grad, K

The expressions for K and grad, K involve derivatives of G(n)
with respect to perturbations of the domain S(7)).

» Proposition
Let 1) € C'. Then G(n) satisfies:
G(n) is positive semidefinite.
It is self-adjoint (on an appropriately chosen domain).
G(n) maps H'(R*™") 10 L*(R*™") continuously.
As an operator G(n) - H'(RY™") — L2(R™") it is analytic in
n € Bg(0) € C'(R*™1).

el



ZCS system

» Rewriting the system for water waves in these coordinates

om = G(n)§
0§ = —gn — grad ,K(n, &)

Variations of the kinetic energy with respect to the free surface
7(x) (the shape derivative) are given by

grad ,K(n,§) = 2(1+l|3x77|2) (|8X£|2 — (G(n)¢)?

—2(0m - 9GS + (19m0:” = (9m - 0.6)%))

» Variational formula of Hadamard (1910), (1916), related to the
derivative of the Green’s function with respect to the domain.
Among other things, this is a useful formulation for numerical
simulations



» Simulations using the Dirichlet — Neumann formulation

Figure : Head-on collision of two solitary waves, case S/h = 0.4

Phys. Fluids 18, (2006)



proof by first principles of mechanics

» The Lagragian for surface water waves
L:=K-P

expressed in the tangent space variables (7, 7).
» Use the kinematic condition

1= 0Oy — Ok - Orp = G(1)€

» The Lagrangian is thus

L) =4 [, 0G0~ P

» The canonical conjugate variables are precisely those given by
Zakharov.

(77» aﬁL) = (77’ G_l (77)77) = (77» 6)



Taylor expansion of G(7)
» The operator G(1)&(x) is analytic, given by the expression
=Y GV (n)e
=0
where each GU) (n) is homogeneous of degree j in 7

» Explicitely, for D, := —i0,
G¢(x) = || tanh(h|D.|)¢ (x)
G ()é(x) = Dy - nDx — GG V()
GAMEw) = —3(GD; + DGl — 260G G ) (x)

> Accordingly the Hamiltonian is analytic, with expansion

H(n€) = /R 16GO¢ 1 SnPax+ Y L /dlfG(’ ()€ dx
Jj>3
= > HY(n,9)

j=2



Hamiltonian PDE
» Phase space taken to be v € M a Hilbert space with inner product
(X, Y)y,for X, Y € T(M)
» Symplectic form given by a two form

wX,Y)=X,J 'y, JT=-J

for tangent vectors X, ¥ € T(M). Antisymmetry J 7 = —J !
» Hamiltonian vector field Xy defined through the relation
dH(Y) = w(Y,Xy) = (grad H,Y)y forall Y € T(M)

o = Jgrad H(v) , v(x,0) =1+°(x)

» The flow v(x,7) = ¢,(v(x)), defined forv € My C M
» Poisson brackets between H and other functions F are given by
the expressions

{H,F}(v) : F(pi(v)) = (grad H(v), Jgrad, F(v))u

_@t:O



Poisson brackets and conservation laws
Express a conservation law using the Poisson bracket

6tK(77(17 ')7§(t7 )) - {H7K}
= /grad oK grad (H — grad K grad , H dx

» Conservation of mass  M(n) = [ ndx
{H,M} = /grad oM grad H — grad ;M grad , H dx
= / 1G(n)€ dx
= /G(n)lfdx:O

» Momentum [(n,§) = [0 dx ol ={HI}=0
» Energy H(n,§) OH={H,H} =0



example 2: the quasilinear wave equation
» Quasilinear wave equations
Ofu — Au+ 0,Go(Ou, du) + %05, Gj(Ou, Oxu) =0 (2)

with initial data u(0, x) = f(x) and J;u(0,x) = g(x)
» This equation can be written as a Hamiltonian PDE. The
Lagrangian is

L= / Li2 — Youl? + Gli, ) dx

Use the Legendre transform to change to canonical conjugate
variables
p = 0L = p(it, Ou)

The Hamiltonian is now
Hu,p) = / 1% 4 Lowul® + R(p, Ou) dx

where R(p, O.u) = —G(it, Oxu) for i = it(p, Oxut)



quasilinear wave equation (cont.)
» Equation (2) can be rewritten as

Ou = grad,H(u,p) =p+ R
Op = —grad,H(u,p) = Au—Zjﬁxja,,’YjR(p,axu)

which is in Darboux coordinates.

» Theorem (local existence theorem)

Systems of equations of this form are symmetrizable hyperbolic
systems. Therefore for Sobolev data of sufficient smoothness r > 0

(uo(x), po(x)) € H"(R)
a solution exists locally in time

(u(t,x), p(t,x)) = pi(ug, po) € C([-T,+T] : H' (RY)) := My C L*(RY)



Example 3: NLS

» Nonlinear Schrodinger equation
On R? or on a domain T¢ = R /T, for period lattice I

i0u — A+ Q(x,u, ) = 0
with Hamiltonian

Hys(u) = /2’v“|2 + G(x,u,u)dx, 0zG=2Q

Rewritten
8,14 = igradﬁHNLS

» In many cases the Schrodinger equation admits a gauge

symmetry under phase translation, in which case G = G(x

3)

Jul?)



example 4: Shallow water equations
» Shallow water equations Model equations for water waves

aﬂ? = _ax : ((h + 77)ax£) (4)
06 = —gn — $|0:€[?

» This is a Hamiltonian PDE with Hamiltonian

Hyy = | / (h -+ n(x)|O:E> + g d

» The mathematically rigorous study of the shallow water limit of
the equations of water waves was initiated by T. Kano &
T. Nishida (1979).

The work of D. Lannes (2000) extended their results from the
analytic category to to Sobolev spaces, and to more subtle
limiting situations such as the Green - Naghdi system



example 5: Boussinesq systems

» Boussinesq system on spatial domain D C R!
The Hamiltonian is

1 g 1
HBuuxsinesq(p-/ Q) - / ipz + qu + E(axpy + G(X, CI) dx
T!

The symplectic form is given by Jg,ussinesq = ( 0 —ax>

-0, O
1.7 = *axgraquBoussinesq (va) - *ax(gq + aqG) (5)
. 1
q = _axgradeBouwii1esq (6]717) — —3)(([7 + 88;%]7 + 8pG)

» The — sign is badly ill-posed (McKean, the bad Boussinesq),
while the + sign is well posed (the good Boussinesq).

Completely integrable nonlinear cases include G = p*
(Zakharov) and G = %qu (Kaup, Sachs)



Example 6: the generalized KdV

> Korteweg — de Vries equation
1
Or = 68’3}" — 0.(0,G(x,7)), xeT! (6)
The Hamiltonian is

Hgay(r) = A] 11—2((9xr)2 + G(x,r)dx

Rewritten
Or = J grad, Hggy ,  where J = —0;

Completely integrable cases are G = > and G = r*

» Rigorous studies of water waves in the KdV scaling regime and
limit are given in Craig (1985), T. Kano & T. Nishida (1986) and
others



Water waves Hamiltonian in general coordinates
Following a question of T. Nishida in 2016

> Fluid domain (¢) C R? with free surface 7(z, s).
Evolution determined by free surface conditions

Tiy - Ny =0, p(t,7(1,5)) =0

» Energy = kinetic + potential

H=K+P, K;// |Vo(x,y)|* dydx
Q

Potential energy

2
P://V~dedx, v=(05%"
Q



Legendre transform

» Lagrangian
L=K-P

The kinematic boundary condition states that
N-4=N-Vo(y) =G(v)¢

Decmpose the vector field ¥(s) along the curve
v = (71(s),72(s)) in terms of its Frenet frame (7'(s), N(s))

n(t,s) =N-A(t,s), 7(t,s)=T-(t,s)

then the Lagrangian is

L= é[yn(l,s)G1(’y)n(t,s)dS7—/V-NdS7

Y

» The Legendre transform

551 = G (1)n(t,s) = £(s)
) s Is71(s)
/g ds+L2 HOR




Hamilton’s canonical equations
» variations 0y and 0¢ of the Hamiltonian
N -5 =n=05K=G(7)¢

the kinematic boundary conditions
» Decomposing boundary variations 5y = (N - 6v)N + (T - 6y) T
variations of the potential energy

Oy P -6y = On.syP - 0y = /g’yz(s) N - 6vdS,
Jy

» Finally 9, K has normal and tangential components, with the
result that

1
0 = —g — 3 (1 (07 ~ (Ge)* -

——0& 7')
!&7\

The tangential component 7 = 7 - + depends upon the manner in
which the surface is parametrized, which in most cases imposes
a holonomic constraint



Thank you
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