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Euler’s equations and free surface water waves
I Fluid domain S(η) := {x ∈ Rd−1, y ∈ (−h, η(x))}, d = 2, 3
I Incompressibility and irrotationality

∇ · u = 0 , ∇∧ u = 0

therefore u = ∇ϕ where

∆ϕ = 0

I On the solid bottom boundary of S(η)

N · u = 0

I On the free surface Γ(η) := {y = η(x)}

∂tη = ∂yϕ− ∂xη · ∂xϕ

∂tϕ = −gη − 1
2 |∇ϕ|

2 ,



Figure : Great waves off the Oregon coast



kinetic and potential energy
I The energy H of the system of equations is

H = K + P :=

∫
Rd−1

∫ η(x)

−h

1
2 |u|

2 dydx +

∫
Rd−1

∫ η(x)

−h
gy dydx

=

∫
Rd−1

∫ η(x)

−h

1
2 |∇ϕ|

2 dydx +

∫
Rd−1

g
2η

2 dx− C ,

I Rewrite the kinetic energy by integrating by parts

K =

∫
Rd−1

∫ η(x)

−h

1
2 |∇ϕ|

2 dydx = −
∫
Rd−1

∫ η(x)

−h

1
2ϕ∆ϕ dydx

+

∫
Rd−1

1
2ϕN · ∇ϕ dSbottom +

∫
Rd−1

1
2ϕN · ∇ϕ dSfree surface

I Define ξ(x) := ϕ(x, η(x)), the kinetic energy is therefore

K =

∫
Rd−1

1
2ξN · ∇ϕ dSfree surface =

∫
Rd−1

1
2ξG(η)ξ dx

where G(η) is the Dirichlet – Neumann operator.



Dirichlet – Neumann operator

I The Dirichlet – Neumann operator

G(η)ξ(x) = (∂y − ∂xη(x) · ∂x)ϕ(x, η(x)) = R(N · ∇ϕ)(x, η(x))

where R =
√

1 + |∂xη|2 is a normalization factor so that G(η) is
self-adjoint on L2(dx).

I The Hamiltonian

H =

∫
Rd−1

1
2ξG(η)ξ + g

2η
2 dx

Theorem (Zakharov (1968))
The pair of functions (η(x), ξ(x)) are canonical variables for the
water waves problem in which it can be written in Darboux
coordinates, with Hamiltonian H(η, ξ).



Hamiltonian formulation

I Therefore the equations for water waves can be rewritten in
Darboux coordinates;

η̇ = gradξH = G(η)ξ (1)

ξ̇ = −gradηH = −gη − gradηK

The expressions for K and gradηK involve derivatives of G(η)
with respect to perturbations of the domain S(η).

I Proposition
Let η ∈ C1. Then G(η) satisfies:

1. G(η) is positive semidefinite.
2. It is self-adjoint (on an appropriately chosen domain).
3. G(η) maps H1(Rd−1) to L2(Rd−1) continuously.
4. As an operator G(η) : H1(Rd−1)→ L2(Rd−1) it is analytic in
η ∈ BR(0) ⊆ C1(Rd−1).



ZCS system
I Rewriting the system for water waves in these coordinates

∂tη = G(η)ξ

∂tξ = −gη − grad ηK(η, ξ)

Variations of the kinetic energy with respect to the free surface
η(x) (the shape derivative) are given by

grad ηK(η, ξ) =
1

2(1 + |∂xη|2)

(
|∂xξ|2 − (G(η)ξ)2

− 2(∂xη · ∂xξ)G(η)ξ +
(
|∂xη|2|∂xξ|2 − (∂xη · ∂xξ)

2))

I Variational formula of Hadamard (1910), (1916), related to the
derivative of the Green’s function with respect to the domain.
Among other things, this is a useful formulation for numerical
simulations



I Simulations using the Dirichlet – Neumann formulation
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Figure : Head-on collision of two solitary waves, case S/h = 0.4
W. Craig, J. Hammack, D. Henderson, P. Guyenne & C. Sulem,
Phys. Fluids 18, (2006)



proof by first principles of mechanics
I The Lagragian for surface water waves

L := K − P

expressed in the tangent space variables (η, η̇).
I Use the kinematic condition

η̇ = ∂yϕ− ∂xη · ∂xϕ = G(η)ξ

I The Lagrangian is thus

L(η, η̇) = 1
2

∫
Rd−1

η̇G−1(η)η̇ − g
2η

2 dx

I The canonical conjugate variables are precisely those given by
Zakharov.

(η, ∂η̇L) = (η,G−1(η)η̇) = (η, ξ)



Taylor expansion of G(η)
I The operator G(η)ξ(x) is analytic, given by the expression

G(η)ξ =
∑
j≥0

G(j)(η)ξ

where each G(j)(η) is homogeneous of degree j in η
I Explicitely, for Dx := −i∂x

G(0)ξ(x) = |Dx| tanh(h|Dx|)ξ(x)

G(1)(η)ξ(x) = Dx · ηDx − G(0)ηG(0)ξ(x)

G(2)(η)ξ(x) = −1
2(G(0)η2D2

x + D2
xη

2G(0) − 2G(0)ηG(0)ηG(0))ξ(x)

I Accordingly the Hamiltonian is analytic, with expansion

H(η, ξ) =

∫
Rd−1

1
2ξG(0)ξ + g

2η
2 dx +

∑
j≥3

1
2

∫
Rd−1

ξG(j−2)(η)ξ dx

=
∑
j≥2

H(j)(η, ξ)



Hamiltonian PDE
I Phase space taken to be v ∈ M a Hilbert space with inner product
〈X,Y〉M, for X,Y ∈ T(M)

I Symplectic form given by a two form

ω(X,Y) = 〈X, J−1Y〉M , JT = −J

for tangent vectors X,Y ∈ T(M). Antisymmetry J−T = −J−1

I Hamiltonian vector field XH defined through the relation
dH(Y) = ω(Y,XH) = 〈gradvH,Y〉M for all Y ∈ T(M)

∂tv = JgradvH(v) , v(x, 0) = v0(x)

I The flow v(x, t) = ϕt(v(x)), defined for v ∈ M0 ⊆ M
I Poisson brackets between H and other functions F are given by

the expressions

{H,F}(v) :=
d
dt

∣∣∣
t=0

F(ϕt(v)) = 〈gradvH(v), JgradvF(v)〉M



Poisson brackets and conservation laws
Express a conservation law using the Poisson bracket

∂tK(η(t, ·), ξ(t, ·)) = {H,K}

:=

∫
grad ηK grad ξH − grad ξK grad ηH dx

I Conservation of mass M(η) =
∫
η dx

{H,M} =

∫
grad ηM grad ξH − grad ξM grad ηH dx

=

∫
1 G(η)ξ dx

=

∫
G(η)1 ξ dx = 0

I Momentum I(η, ξ) =
∫
η∂xξ dx ∂tI = {H, I} = 0

I Energy H(η, ξ) ∂tH = {H,H} = 0



example 2: the quasilinear wave equation
I Quasilinear wave equations

∂2
t u−∆u + ∂tG0(∂tu, ∂xu) + Σj∂xjGj(∂tu, ∂xu) = 0 (2)

with initial data u(0, x) = f (x) and ∂tu(0, x) = g(x)

I This equation can be written as a Hamiltonian PDE. The
Lagrangian is

L =

∫
1
2 u̇2 − 1

2 |∂xu|2 + G(u̇, ∂xu) dx

Use the Legendre transform to change to canonical conjugate
variables

p := ∂u̇L = p(u̇, ∂xu)

The Hamiltonian is now

H(u, p) :=

∫
1
2 p2 + 1

2 |∂xu|2 + R(p, ∂xu) dx

where R(p, ∂xu) = −G(u̇, ∂xu) for u̇ = u̇(p, ∂xu)



quasilinear wave equation (cont.)

I Equation (2) can be rewritten as

∂tu = gradpH(u, p) = p + ∂pR

∂tp = −graduH(u, p) = ∆u− Σj∂xj∂uxj
R(p, ∂xu)

which is in Darboux coordinates.

I Theorem (local existence theorem)
Systems of equations of this form are symmetrizable hyperbolic
systems. Therefore for Sobolev data of sufficient smoothness r > 0

(u0(x), p0(x)) ∈ Hr(Rd)

a solution exists locally in time

(u(t, x), p(t, x)) = ϕt(u0, p0) ∈ C([−T,+T] : Hr(Rd)) := M0 ⊆ L2(Rd)



Example 3: NLS

I Nonlinear Schrödinger equation
On Rd or on a domain Td = Rd/Γ, for period lattice Γ

i∂tu− 1
2∆xu + Q(x, u, u) = 0 (3)

with Hamiltonian

HNLS(u) =

∫
1
2 |∇u|2 + G(x, u, u) dx , ∂uG = Q

Rewritten
∂tu = i graduHNLS

I In many cases the Schrödinger equation admits a gauge
symmetry under phase translation, in which case G = G(x, |u|2)



example 4: Shallow water equations
I Shallow water equations Model equations for water waves

∂tη = −∂x ·
(
(h + η)∂xξ

)
(4)

∂tξ = −gη − 1
2 |∂xξ|2

I This is a Hamiltonian PDE with Hamiltonian

HSW = 1
2

∫
(h + η(x))|∂xξ|2 + gη2 dx

I The mathematically rigorous study of the shallow water limit of
the equations of water waves was initiated by T. Kano &
T. Nishida (1979).

The work of D. Lannes (2000) extended their results from the
analytic category to to Sobolev spaces, and to more subtle
limiting situations such as the Green - Naghdi system



example 5: Boussinesq systems
I Boussinesq system on spatial domain D ⊆ R1

The Hamiltonian is

HBoussinesq(p, q) =

∫
T1

1
2

p2 +
g
2

q2 ± 1
12

(∂xp)2 + G(x, q) dx

The symplectic form is given by JBoussinesq =

(
0 −∂x

−∂x 0

)
ṗ = −∂xgradqHBoussinesq(q, p) = −∂x(gq + ∂qG) (5)

q̇ = −∂xgradpHBoussinesq(q, p) = −∂x(p∓ 1
6
∂2

x p + ∂pG)

I The − sign is badly ill-posed (McKean, the bad Boussinesq),
while the + sign is well posed (the good Boussinesq).

Completely integrable nonlinear cases include G = p3

(Zakharov) and G = 1
2 qp2 (Kaup, Sachs)



Example 6: the generalized KdV

I Korteweg – de Vries equation

∂tr =
1
6
∂3

x r − ∂x(∂rG(x, r)) , x ∈ T1 (6)

The Hamiltonian is

HKdV(r) =

∫
T1

1
12

(∂xr)2 + G(x, r) dx

Rewritten

∂tr = J gradrHKdV , where J = −∂x

Completely integrable cases are G = r3 and G = r4

I Rigorous studies of water waves in the KdV scaling regime and
limit are given in Craig (1985), T. Kano & T. Nishida (1986) and
others



Water waves Hamiltonian in general coordinates
Following a question of T. Nishida in 2016

I Fluid domain Ω(t) ⊆ R2 with free surface γ(t, s).
Evolution determined by free surface conditions

Ttxy · Ntxy = 0 , p(t, γ(t, s)) = 0

I Energy = kinetic + potential

H = K + P , K = 1
2

∫∫
Ω
|∇ϕ(x, y)|2 dydx

Potential energy

P =

∫∫
Ω
∇ · V dydx , V = (0,

gy2

2
)

I Dirichlet – Neumann operator, with ϕ(γ(s)) = ξ(s)

G(γ)ξ(s) := N · ∇ϕ(γ(s)) , K = 1
2

∫
γ
ξ(s)G(γ)ξ(s) dSγ



Legendre transform
I Lagrangian

L = K − P

The kinematic boundary condition states that

N · γ̇ = N · ∇ϕ(γ) = G(γ)ξ

Decmpose the vector field γ̇(s) along the curve
γ = (γ1(s), γ2(s)) in terms of its Frenet frame (T(s),N(s))

n(t, s) = N · γ̇(t, s) , τ(t, s) = T · γ̇(t, s)

then the Lagrangian is

L = 1
2

∫
γ

n(t, s)G−1(γ)n(t, s) dSγ −
∫
γ

V · N dSγ

I The Legendre transform

δγ̇L = G−1(γ)n(t, s) = ξ(s) ,

H = 1
2

∫
γ
ξ(s)G(γ)ξ(s) dSγ +

∫
γ

g
2
γ2

2(s)
∂sγ1(s)
|∂sγ|

dSγ



Hamilton’s canonical equations
I variations δγ and δξ of the Hamiltonian

N · γ̇ = n = δξK = G(γ)ξ

the kinematic boundary conditions
I Decomposing boundary variations δγ = (N · δγ) N + (T · δγ) T

variations of the potential energy

δγP · δγ = δN·δγP · δγ =

∫
γ

gγ2(s) N · δγ dSγ

I Finally δγK has normal and tangential components, with the
result that

∂tξ = −gγ2 − 1
2

( 1
|∂sγ|2

(∂sξ)
2 − (G(γ)ξ)2 − 1

|∂sγ|
∂sξτ

)
The tangential component τ = T · γ̇ depends upon the manner in
which the surface is parametrized, which in most cases imposes
a holonomic constraint



Thank you
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