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A Little History and Some Basic Phenomenology

Mathematical modeling and corresponding study of
the resistance of a liquid against a body has a long
history going back to the mid-700’s.

In 1748, likely motivated by the need of improving
pipeline and ship design, the Berlin Academy
proposed as the topic for the prize competition of
1750 the “theory of the resistance of fluids.”

Jean d’Alembert, a winner of the previous
Academy prize in 1746, submitted an essay to the
Committee for their evaluation.
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d’Alembert seminal new ideas:

Introduction of the velocity field (vs. “velocity
averages” of the Bernoullis). The velocity is
allowed to vary from one place to another;

Deduction of a set of equations that would
nowadays be classified as those governing
irrotational, plane flow of an incompressible fluid:

vx =
∂ϕ

∂x
, vy =

∂ϕ

∂y( ∂2

∂x2 +
∂2

∂y2

)
ϕ = 0
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Despite its undoubted value –especially in
retrospect– d’Alembert’s manuscript was not
awarded the Academy prize. The Committee
decided that no manuscript submitted was good
enough to earn the prize, by providing the official
justification that “mathematical predictions were
not compared with experiments,” and postponed
the competition to the following year 1751.
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d’Alembert became quite angry, because, in his
view, such a requirement had not been made plain
in the original statement of the problem. As a
result, he at once decided to withdraw his
manuscript, which he published in 1752 in an
enlarged book form (“Essai d’une Nouvelle Théorie
de la Résistance des Fluides”), where, among other
things, he extended his theory to include the more
general case of axially–symmetric flow.

For the record, the prize was eventually awarded in
1752 to Jacobo Adami, an apparently amateur
Italian mathematician.
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The president of the prize Committee was
Leonhard Euler. There is little doubt that
Euler picked up d’Alembert painful pioneering
efforts and, eventually, expanded them into a series
of three fundamental papers published in 1757 in
the Memoires de l’Academie Royale des Sciences de
Berlin.
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d’Alembert’s “revenge” against Euler came a
little later, in 1768, when he showed that Euler’s
model is unable to give any explanation of the force,
F , exerted on an obstacle, B, fully submerged in
the stream of a liquid (d’Alembert Paradox).

A modern version of the paradox goes as follows.

The motion is assumed steady and irrotational:

v = ∇ϕ , ∆ϕ = 0 in Ω = R3 −B ;

∂ϕ

∂n

∣∣∣∣
∂Ω

= 0 , lim
|x|→∞

∇ϕ = U

p = −1
2ρ
[
(∇ϕ)2 −U ·U

]
.
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Integrating Euler equations on ΩR:

F := −
∫

S

pn = −1
2ρ

∫
ΣR

(∇ϕ−U ) · (∇ϕ+ U ) nR

−
∫

ΣR

[
(∇ϕ−U ) · nR∇ϕ+ U · nR(∇ϕ−U )

]
∇ϕ−U = O(R−3) =⇒ F = 0
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What about the assumption of irrotational flow?

Heuristic: At very large distances from B, the flow
is uniform (v = U ), so that the vorticity ω(X, t) of
the particle X at time t must satisfy (say)
ω(X, 0) = 0. By Helmholtz theorem,

ω(X, t) = F · ω(X, 0) ,

Fij =
∂xi

∂Xj
, x = position of X at time t

Thus ω(X, t) ≡ 0, provided the inverse map
x → X exists and is smooth enough.
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As a matter of fact, there is no rigorous proof of
d’Alembert paradox in the general case.

Recently, Hoffman & Johnson (JMFM 2010) have
provided numerical evidence that irrotational flows
are unstable to small perturbations. Instead, they
found different solutions showing substantial
nonzero drag and lift
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As is known, d’Alembert paradox can be resolved by
using the model introduced by Navier (1822),
which takes into account the viscosity of the liquid:
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A.C., Bull. Sci. Math. Phys. Chim.,5, (1828) p. 13

Besides, Mr. Navier himself states that his
basic principle is merely a hypothesis that
only experience can verify.
But if ordinary formulas of hydrodynamics
are already so rebellious to the analysis, what
should we expect from new formulas that are
much more complicated?
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Stokes formula for the drag (1851)

Setting

T (v, p) = ρ ν
[
∇v + (∇v)>]− pI ,

the drag, FD, on the body B is defined as

FD = U ·
∫

∂B

T (v, p)·n ; n = outer normal to ∂B .

B is a sphere of radius R ;
motion is steady and “slow” (nonlinearity
neglected) ;

FD = 6 π ρ ν RU .
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Oseen Refinement of Stokes Formula (1927)

By replacing the nonlinear term in the Navier-Stokes
equations with

U · ∇v ,

Oseen provided the following, more accurate
approximation of FD:

FD = 6 π ρ ν RU
(
1 + 3

8Re +O(Re2)
)
,

Re :=
U R

ν
.
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A further refinement of Oseen formula, was later
achieved by Proudman and Pearson (JFM, 1957)
through a semi-quantitative argument (matching
asymptotics expansion), and on an entirely rigorous
ground by using the fully nonlinear equations, by
Fischer, Hsiao & Wendland (JMAA, 1985):

FD = 6 π ρ ν RU
(
1+ 3

8Re+ 9
40Re2 ln Re+O(Re2)

)
.
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That’s how far mathematical analysis goes.

How do these results compare with the real world?

Introduce the dimensionless drag coefficient CD:

FD = π
4 ρCD U

2R2 .

By a simple dimensional analysis one shows that

CD = CD(Re) , Re =
UR

ν

For very slow (Stokes) flow, FD = 6πρν UR, and

CD =
24

Re
.
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What is the reason for the discrepancy between the
observed and the predicted values, even at “small”
Reynolds numbers?

The drag is calculated along steady and laminar
flow (i.e. corresponding solutions exist for all
Reynolds numbers) ;

As the Reynolds number is more and more
increased, the motion of the liquid is neither
laminar nor steady. Actually, the dynamics is
very complex, even before turbulence sets in.
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At Reynolds number around 105 the drag coefficient
drops dramatically:
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This phenomenon is due to a sudden size reduction
of the wake behind the body

A ball thrown in the air that reaches those Reynolds
numbers can keep its speed for longer
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Drag crisis occurs at lower Reynolds number if the
surface is rough:
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Application to Golf:
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Summary and Qualitative Bifurcation Diagram
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Mathematical Modeling

We assume that the (Navier-Stokes) liquid fills the
whole space, Ω, outside a body B, driven by a
uniform flow, of constant velocity U , at large
distances from B. Let U = U e1, d = diam(B).

Relevant flow equations in dimensionless form
(∂t ≡ ∂/∂t):

∂tv + λv · ∇v = ∆v −∇p
div v = 0

}
in Ω× (0,∞)

v(x, t) = 0 , x ∈ ∂Ω , lim
|x|→∞

v(x, t) = e1 , t ≥ 0

λ ≡ Re =
Ud

ν
.
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Mathematical Modeling

Notation.

D1,2
0 (Ω) :={
u ∈ L1

loc(Ω) : ∇u ∈ L2(Ω) , div u = 0 , u|∂Ω = 0
}

Solenoidal Extension(Leray-Hopf)

Let V = V (λ) ∈ C∞
0 (Ω) such that

(a) V |∂Ω = −e1 ;

(b) div V = 0 ;

(c) −
∫

Ω
u · ∇V · u ≤ 1

2λ‖∇u‖2
2 , all u ∈ D1,2

0 (Ω) .
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Mathematical Modeling

Setting u := v − V − e1, the relevant problem
becomes (∂1 ≡ ∂/∂x1)

∂tu + λ(∂1u + V · ∇u + u · ∇V )

= −λu · ∇u + ∆u−∇p+ H

div u = 0


u(x, t) = 0 , x ∈ ∂Ω , lim

|x|→∞
u(x, t) = 0

with
H := −λ(e1 + V ) · ∇V + ∆V



Steady-State Solutions

Steady-state solutions (∂u/∂t ≡ 0) must then
satisfy :

∆u− λ(∂1u + V · ∇u + u · ∇V )−∇p
= λu · ∇u−H

div u = 0

 in Ω

u(x) = 0 , x ∈ ∂Ω , lim
|x|→∞

u(x) = 0

To study the properties of these solutions for
arbitrary λ ∈ (0,∞) it is convenient to reformulate
the problem in an appropriate Banach space.



Steady-State Solutions

Steady-state solutions (∂u/∂t ≡ 0) must then
satisfy :

∆u− λ(∂1u + V · ∇u + u · ∇V )−∇p
= λu · ∇u−H

div u = 0

 in Ω

u(x) = 0 , x ∈ ∂Ω , lim
|x|→∞

u(x) = 0

To study the properties of these solutions for
arbitrary λ ∈ (0,∞) it is convenient to reformulate
the problem in an appropriate Banach space.



Steady-State Solutions: Generic Properties and Bifurcation



Steady-State Solutions: Generic Properties and Bifurcation

Let D−1,2
0 (Ω) =

(
D1,2

0 (Ω)
)′

, and define

X(Ω) =
{
u ∈ D1,2

0 (Ω) : ∂1u ∈ D−1,2
0 (Ω)

}
where

∂1u∈D−1,2
0 (Ω) ⇔ sup

ϕ∈D1,2
0 (Ω)

|
∫

Ω ∂1u ·ϕ|
‖∇ϕ‖2

:= |∂1u|−1,2 <∞.

X(Ω) is a separable, reflexive Banach space when
endowed with the “natural” norm:

‖u‖X(Ω) := ‖∇u‖2 + |∂1u|−1,2 .
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Two fundamental properties (GPG ’07)

Lemma 1. X(Ω) ⊂ L4(Ω) and

‖u‖4 ≤ C |∂1u|
1
4
−1,2‖∇u‖

3
4
2 .

Corollary
u ∈ X(Ω) =⇒ u · ∇u ≡ div (u⊗ u) ∈ D−1,2

0 (Ω)

Remark. If merely u ∈ D1,2
0 (Ω) we can only deduce

(Sobolev) u ∈ L6(Ω). Therefore X(Ω) ⊂ D1,2
0 (Ω)

is a “more regular” space at infinity.
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Steady-State Solutions: Generic Properties and Bifurcation

Define the (linear) “Oseen Operator”

L : (λ,u) ∈ (0,∞)×X(Ω) 7→
∆u− λ(∂1u + V · ∇u + u · ∇V ) ∈ D−1,2

0 (Ω)

(well-defined because V ∈ C∞
0 (Ω));

the (nonlinear) operator

N : (λ,u) ∈ (0,∞)×X(Ω) 7→ λu·∇u ∈ D−1,2
0 (Ω)

(well-defined because of the Corollary) ;

and

H : λ ∈ (0,∞) 7→ λ (e1+V )·∇V −∆V ∈ D−1,2
0 (Ω)
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Steady-State Solutions: Generic Properties and Bifurcation

The steady-state problem can be then reformulated
as the equation:

M(λ,u) := L(λ,u)+H(λ)+N(λ,u) = 0 in D−1,2
0 (Ω) .

We would like to investigate generic properties of
the solution manifold:

M :=
{
(λ,u) ∈ (0,∞)×X(Ω) : M(λ,u) = 0

}
and associated level set:

S(λ0) =
{
u ∈ X(Ω) : M(λ0,u) = 0

}
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Steady-State Solutions: Generic Properties and Bifurcation

(i) Is S(λ0) 6= ∅? (Existence) ;

(ii) When is dim(S(λ0)) = 1? (Global Uniqueness)

(iii) What is dim(S(λ0)), in general? (How many
solutions for a given λ0)

(iv) What is the geometric structure of M?

Given a solution branch (λ,u) ∈ M, λ ∈ U(λ0), the
point (λ0,u0) is a steady bifurcation point if there
is (λn,wn) ∈ M such that

λn → λ0 , wn → u0 , wn 6= u .

(v) Ho do we characterize steady bifurcation points?
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Steady-State Solutions: Generic Properties and Bifurcation

A result from Nonlinear Analysis. (X, Y B–spaces)

A linear operator L : X → Y is Fredholm of index
m ∈ N if (N = null space; R = range)

α := dim N(L) <∞ , β := codim R(L) <∞ ;

m = α− β .

A nonlinear map M ∈ C1(X, Y ) with D(M) = X is
Fredholm of index m ∈ N, if M ′(x) is Fredholm of
index m for all x ∈ X.

A map M : X → Y is proper if M−1(C) is compact
in X for every compact C ⊂ Y .
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Theorem 1. (GPG ’07) M ∈ C2(X, Y ) is a proper
Fredholm map of index 0 satisfying the following
properties.

(i) There exists y ∈ Y such that M(x) = y has one
and only one solution x ;

(ii) N[M ′(x)] = {0} .

Then the following properties hold.

(a) For any y ∈ Y , M(x) = y has one solution ;

(b) There exists an open, dense (residual) set
Y0 ⊂ Y such that for any y ∈ Y0 (“almost all”
y ∈ Y ) the equation M(x) = y has an odd
number, κ = κ(y), of solutions .
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Steady-State Solutions: Generic Properties and Bifurcation

Apply the theorem to M ≡ M(λ, ·), for a fixed
λ > 0. Give for granted, momentarily, Fredholm
property and properness and check (i) and (ii).

Choose y = H (≡ −λ(e1 + V ) · ∇V + ∆V ), then
M(x) = y becomes (formally)

∆u− λ(∂1u + V · ∇u + u · ∇V + u · ∇u) = ∇p
div u = 0

u = 0 at ∂Ω

=⇒ ‖∇u‖2
2 = −λ

∫
Ω
u·∇V ·u ≤ 1

2‖∇u‖2
2 =⇒ u = 0
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Assumption (ii) then reduces to show that the
linearization around u = 0:

∆w − λ(∂1w + V · ∇w + w · ∇V ) = ∇p
div w = 0

w = 0 at ∂Ω

has only the solution w = 0.

As before,

‖∇w‖2
2 = −λ

∫
Ω
w·∇V ·w ≤ 1

2‖∇w‖2
2 =⇒ w = 0 .
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Steady-State Solutions: Generic Properties and Bifurcation

Fredholm Property

For fixed λ > 0 the derivative (linearization), Mu,
of M(λ, ·) at u ∈ X(Ω) is:

Mu : w∈ X(Ω) 7→

∆w − λ ∂1w + λ(V · ∇w + w · ∇V )

−λ(u · ∇w +∇w · ∇u) ∈ D−1,2
0 (Ω)

This shows that M(λ, ·) is Fredholm of index 0.
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Let
{wn} ⊂ X(Ω) , ‖wn‖X(Ω) = 1 .

We have to show that there is {wn′} ⊆ {wn} such
that, as n′ →∞,

|u · ∇wn′|−1,2 := sup
ϕ∈D1,2

0 (Ω)

|(u · ∇wn′,ϕ)|
‖∇ϕ‖2

→ 0 ,

|wn′ · ∇u|−1,2 := sup
ϕ∈D1,2

0 (Ω)

|(wn′ · ∇u,ϕ)|
‖∇ϕ‖2

→ 0 ,

(
u1,u2) :=

∫
Ω
u1 · u2 .
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Since ‖wn‖X(Ω) = 1 , by embedding (Lemma 1)

‖wn‖4 + ‖∇wn‖2 ≤ C .

X(Ω) reflexive + (local) compact embedding ⇒

wn′ → 0 strongly in L4
loc(Ω)

Thus, uniformly in ϕ ∈ D1,2
0 (Ω), as n′, R→∞:

|(u·∇wn′,ϕ)|
=|(div (u⊗wn′),ϕ)| = |(u⊗wn′,∇ϕ)|
≤
(
‖u‖4‖wn′‖4,ΩR

+ ‖u‖4,ΩR‖wn′‖4
)
‖∇ϕ‖2

→ 0
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Properness.

Classical Leray-Schauder: M : X 7→ Y

(A) M = H+N , H homeomorphism, N compact ;

(B) There is φ : R+ 7→ R+ mapping bounded set
into bounded set such that

‖x‖X ≤ φ(‖M(x)‖Y ) (a priori estimate) .

In our case (fixed λ):

M =∆u− λ(∂1u + V · ∇u + u · ∇V )︸ ︷︷ ︸
Homeomorphism

−λ u · ∇u︸ ︷︷ ︸
not compact
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(A) M = H+N , H homeomorphism, N compact ;

(B) There is φ : R+ 7→ R+ mapping bounded set
into bounded set such that

‖x‖X ≤ φ(‖M(x)‖Y ) (a priori estimate) .

In our case (fixed λ):

M =∆u− λ(∂1u + V · ∇u + u · ∇V )︸ ︷︷ ︸
Homeomorphism

−λu · ∇w + w · ∇u︸ ︷︷ ︸
derivative is compact
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Properness. Lemma 2 (GPG ’14) Suppose

(A) M = H+N , H homeomorphism, N quadratic ;

(B) N ′(x) compact at every x ∈ X ;

(C) There is ψ : R+ 7→ R+ mapping bounded set
into bounded set, with ψ(s) → 0 as s→ 0, such
that

‖x‖X ≤ ψ(‖M(x)‖Y ) .

Then M is proper .

Take M≡M(λ, ·)−λV · ∇V + ∆V .
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We already checked conditions (A) and (B)

Condition (C) means that given f ∈ D−1,2
0 (Ω) all

corresponding solution u ∈ X(Ω) to

∆u− λ(∂1u + V · ∇u + u · ∇V )

= λu · ∇u +∇p+ f

div u = 0

 in Ω

u = 0 at ∂Ω

satisfy

‖∇u‖2 + |∂1u|−1,2 ≤ ψ(|f |−1,2)
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1st Estimate. (Classical, due to Leray)

‖∇u‖2
2 = −λ(u · ∇V ,u)− 〈f ,u〉

=⇒ ‖∇u‖2
2 ≤ 1

2‖∇u‖2
2 + |f |−1,2‖∇u‖2

=⇒ ‖∇u‖2 ≤ 2 |f |−1,2

2nd Estimate. Recall that the Oseen operator

L : u ∈ X(Ω) →

∆u− λ(∂1u + V · ∇u + u · ∇V ) ∈ D−1,2
0 (Ω)

is a homeomorphism:

‖u‖X(Ω) ≡ ‖∇u‖2 + |∂1u|−1,2 ≤ C |L(u)|−1,2 .
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Thus, from

∆u− λ(∂1u + V · ∇u + u · ∇V )

= λu · ∇u +∇p+ f

div u = 0

 in Ω

u = 0 at ∂Ω

we get

‖∇u‖2 + |∂1u|−1,2 ≤ C
(
|u · ∇u|−1,2 + |f |−1,2

)
≤ C

(
‖u‖2

4 + |f |−1,2
)
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Recall X(Ω) ⊂ L4(Ω) and

‖u‖4 ≤ C |∂1u|
1
4
−1,2‖∇u‖

3
4
2

Thus

‖∇u‖2+ |∂1u|−1,2 ≤ C
(
‖u‖24 + |f |−1,2

)
≤ C

(
|∂1u|

1
2
−1,2‖∇u‖

3
2
2 + |f |−1,2

)
≤ 1

2|∂1u|−1,2 + C
(
‖∇u‖3

2 + |f |−1,2
)

=⇒ ‖∇u‖2 + |∂1u|−1,2 ≤ C
(
|f‖3

−1,2 + |f |−1,2
)

QED
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THEOREM (Existence, GPG ’07).

Let λ > 0. For
any f ∈ D−1,2

0 (Ω) there is at least one

u ∈ X(Ω)
such that

∆u− λ(∂1u + V · ∇u + u · ∇V )−∇p
= λu · ∇u−H + f

div u = 0

 in Ω

u(x) = 0 , x ∈ ∂Ω , lim
|x|→∞

u(x) = 0

Moreover, for “almost all” f , the corresponding
number of solutions is odd.
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THEOREM (Global Uniqueness, GPG ’94).

There is λ∗ > 0 such that for any λ ∈ (0, λ∗) the
steady-state problem (SSP)

∆u− λ(∂1u + V · ∇u + u · ∇V )−∇p
= λu · ∇u−H

div u = 0

 in Ω

u(x) = 0 , x ∈ ∂Ω , lim
|x|→∞

u(x) = 0

has only one solution u ∈ X(Ω).
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λ0 = sup {λ : SSP has unique solution u(λ) ∈ X(Ω)}

What happens for λ > λ0?

Let u0 ∈ X(Ω) the solution to SSP corresponding
to λ = λ0 .

Recall that the linearization at (λ0,u0):

Mu0,λ0
: w ∈ X(Ω) 7→
∆w − λ0 ∂1w + λ0(V · ∇w + w · ∇V )︸ ︷︷ ︸

homeomorphism

−λ0 (u0 · ∇w +∇w · ∇u0)︸ ︷︷ ︸
compact operator

∈ D−1,2
0 (Ω)

is Fredholm of index 0.
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Steady-State Solutions: Generic Properties and Bifurcation

Therefore, by the analytic version of the IFT:

THEOREM.

Suppose the linearization is trivial:

Mu0,λ0
(w) = 0, w ∈ X(Ω) , =⇒ w = 0.

Then, there is U(λ0) such that for all λ ∈ U(λ0),
SSP has a unique and analytic branch of solutions
u(λ) ∈ X(Ω) with u(λ0) = u0 .

Remark. The uniqueness result is of local nature.

Remark. The branch can be continued up to the
first value λ1 where there is w∗ ∈ X(Ω)− {0}:

Mu1,λ1
(w∗) = 0
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Steady-State Solutions: Generic Properties and Bifurcation

The point (λ1,u1) could be a bifurcation point.

A nontrivial linearization need not be sufficient.

Counterexample (Krasnoselskii 1964) Let

M : (λ,x := (x1, x2)) ∈ R× R2

7→

(
x1(1− λ)− x2 |x|2

x2(1− λ) + x1 |x|2

)
∈ R2 .

The linearization at x = 0 has a nontrivial solution
(only) at λ = 1. However, the equations

x1(1− λ)− x2 |x|2 = 0 , x2(1− λ) + x1 |x|2 = 0

have only the solution x1 = x2 = 0 for any λ ∈ R.
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Steady-State Solutions: Generic Properties and Bifurcation

Sufficient condition for bifurcation from (λ1,u1).

Let u(λ), λ ∈ U(λ1), be a sufficiently smooth
branch with u(λ1) = u1. For simplicity, u ≡ u1, for
all λ ∈ U(λ1). Setting w = u− u1, we find

∆w−λ(∂1w+u1 · ∇w+w · ∇u1+w · ∇w)=∇p
div w = 0

w = 0 at ∂Ω .

It is enough to show the existence of w(λ) ∈ X(Ω),
λ ∈ U(λ1):

w(λ) 6≡ 0 , w(λ) → 0 as λ→ λ1 .
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Steady-State Solutions: Generic Properties and Bifurcation

The crucial property that allows us to provide
sufficient condition for the occurrence of (steady)
bifurcation is that the operator

L : w ∈ X(Ω) 7→
∆w−λ1(∂1w+u1 · ∇w+w · ∇u1) ∈ D−1,2

0 (Ω)

is Fredholm of index 0.



Steady-State Solutions: Generic Properties and Bifurcation

THEOREM 1 (GPG ’07) (λ1,u1) is a bifurcation
point if:

(A) Nontrivial linearization The problem

∆w−λ1(∂1w+u1 · ∇w+w · ∇u1)=∇p
div w = 0

w = 0 at ∂Ω
has a unique (normalized) solution w1 ∈ X(Ω).

(B) Branching Condition The problem

∆w−λ1(∂1w+u1 · ∇w+w · ∇u1)=∇p− 1
λ1

∆w1

div w = 0
w = 0 at ∂Ω

has no solution w ∈ X(Ω) .
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An Important Remark. Condition (A) does not
mean that 0 is an eigenvalue (of geometric
multiplicity 1) of the operator

L : w ∈ X(Ω) 7→
∆w−λ1(∂1w+u1 · ∇w+w · ∇u1) ∈ D−1,2

0 (Ω)
.

Since X(Ω) 6⊂ D−1,2
0 (Ω), it is entirely meaningless

to talk of spectrum of L.

When instead defined in W 2,2(Ω) ∩ D1,2
0 (Ω) with

values in L2(Ω) the linearized differential operator L̃
(say) has a well-studied spectrum (Babenko ’82,
Neustupa ’06).
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In particular, the spectrum of L̃ may contain
isolated eigenvalues of finite multiplicity.

Distributions of the Eigenvalues in Flow past a Sphere
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Steady-State Solutions: Generic Properties and Bifurcation

Why can’t we use this functional setting and the
operator L̃ instead of L?

Because the operator L̃ has a non-empty essential
spectrum and, therefore –being its range not
closed– cannot be Fredholm.

On the other hand, the operator L is Fredholm of
index 0.

However, we can still rephrase our bifurcation
theorem in terms of the spectrum of a suitable
linearized operator.
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A sufficient condition for the validity of (A) & (B) is
given in terms of the spectrum, Sp(L), of the
linearized operator:

L : w ∈ X(Ω) ⊂ D1,2
0 (Ω) 7→

∆−1(∂1w+u1 · ∇w+w · ∇u1) ∈ D1,2
0 (Ω) .

Lemma (GPG ’07) L is closed and Sp(L) ∩ (0,∞)
consists of an at most countable number of
eigenvalues of finite algebraic multiplicity clustering
only at 0.
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Steady-State Solutions: Generic Properties and Bifurcation

THEOREM 2 (GPG ’07) Sufficient condition for
(λ1,u1) to be a bifurcation point is that 1/λ1 is
eigenvalue with algebraic multiplicity 1 (simple
eigenvalue) of the operator L.

How many bifurcation points for Reynolds number
in a finite interval?

THEOREM 3 (GPG ’07)

Let u1 ∈ X(Ω) be a solution branch for λ ∈ J ,
where J is a bounded interval with J ∈ (0,∞).
Then, there is at most a finite numbers of
bifurcation points (λk,u1), λk ∈ J , k = 1, 2, . . . ,m.
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Generically, the manifold cannot look like this!
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Steady-State Solutions: Generic Properties and Bifurcation

THEOREM 4 (GPG ’10)

For “almost all” f ∈ D−1,2
0 (Ω) the solution manifold

M(f) = {(λ,u) ∈ X(Ω) : M(λ,u) = f}

is a C∞ 1-dimensional (Banach) manifold.
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Generic Scenario for the Solution Manifold

Generically, steady bifurcation cannot occur!
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Steady-State Solutions: Time-Periodic Bifurcation

Let u0 ∈ X(Ω) be a steady-state solution at λ = λ0

and suppose (λ0,u0) is not a steady-state
bifurcation point (linearization is trivial):

∆w + λ0 (∂1w − u0 · ∇w −w · ∇u0)

+∇p = 0

w ∈ X(Ω)

 =⇒ w ≡ 0

Then, there is a unique analytic family of
steady-state solutions u(λ) ∈ X(Ω), λ ∈ U(λ0),
with u(λ0) = u0 . For simplicity, we assume

u(λ) = u0 , all λ ∈ U(λ0).
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Steady-State Solutions: Time-Periodic Bifurcation

Roughly, the time-periodic bifurcation problem
consists in finding a time-periodic solution in any
neighborhood of the point (λ0,u0).

Writing U = u0 + V + v in the original equations

∂tU + λU · ∇U = ∆U −∇p
div U = 0

}
in Ω× (0,∞)

U (x, t) = 0 , x ∈ ∂Ω , lim
|x|→∞

U (x, t) = e1 , t ≥ 0

the problem can be more precisely formulated as
follows
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Steady-State Solutions: Time-Periodic Bifurcation

Find a family of non-trivial time-periodic functions
v(λ), of period T = T (λ), λ ∈ U(λ0), such that

∂tv−λ
(
∂1v−v · ∇u0 − u0 · ∇v

)
+v · ∇v = ∆v −∇φ
div v = 0

 in Ω× R

v = 0 at ∂Ω× R , lim
|x|→∞

v(x, τ) = 0 , τ ∈ R ,

with v(λ) → 0 as λ→ λ0 .

(1) v ≡ 0 is a solution for all λ ∈ U(λ0) ;

(2) The frequency, ω(λ) := 2π/T (λ), is unknown .
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The formal basic strategy goes as follows.

The first step is time scaling: τ := t/ω .

The problem then reduces to find a family of
non-trivial 2π-periodic solutions v(λ), λ ∈ U(λ0),
such that
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Steady-State Solutions: Time-Periodic Bifurcation

The next step is to have an “approximated”
2π-periodic solution to start with.

Consider the linear operator at “criticality” (λ = λ0)

L0(v) := P
[
∆v + λ0

(
∂1v − u0 · ∇v − v · ∇u0

)]
,

P = Helmholtz Projector.

One assumes that σ(L0) ∩ {i R} consists precisely
of a pair of (simple) complex conjugate eigenvalues
±iω0.

Let a be the unique (normalized) eigenvector
associated to the eigenvalue iω0.
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Steady-State Solutions: Time-Periodic Bifurcation

Then,

v1 := <[a ei τ ] , v2 := =[a ei τ ]

are 2π-periodic solutions to the linearized problem

ω0 ∂τv − P
[
λ0(∂1v − v · ∇u0 − u0 · ∇v) + ∆v

]
=0

div v = 0

}
v|∂Ω = 0 , lim

|x|→∞
v(x, t) = 0

The basic idea is then to construct a solution to the
full nonlinear problem “around” the time-periodic
solution v1 (say) of the above linearization.
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Steady-State Solutions: Time-Periodic Bifurcation

To use a perturbative argument, we write:

ω0 ∂τv − λ0(∂1v − v · ∇u0 − u0 · ∇v) + ∆v

= −∇φ+ N (µ, δ,v)

div v = 0


v|∂Ω = 0 , lim

|x|→∞
v(x, t) = 0

with

N :=−µ ∂τv+δ [∂1v−u0 · ∇v−v · ∇u0]−λv · ∇v ;

µ :=ω − ω0 ; δ := λ− λ0 ,

and require

proj (v) = ε , all ε ∈ [−ε0, ε0] ; proj : v 7→ Span{v1,v2}.
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Steady-State Solutions: Time-Periodic Bifurcation

We frame the problem in B-spaces Y,X(⊆ Y):

ω0
dv

dτ
− L(v) = N(µ, δ, v) , in Y ; proj (v) = ε ,

where

L : X → Y ; N : (µ, δ, v) ∈ R2 × X → Y

Existence of a 2π-periodic branch in ε follows from
the IFT, if

ω0
d

dτ
− L

has a bounded inverse in a (suitable) class of
2π-periodic functions.
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Steady-State Solutions: Time-Periodic Bifurcation

How do we choose the spaces appropriately?

The “classical” approach (Iudovich, Sattinger,
Joseph, Iooss...) requires

X ≡ W 2,2(Ω) ∩ D1,2
0 (Ω) ,

Y ≡ H(Ω) :=
{
u ∈ L2(Ω) : div u = 0 , u · n|∂Ω = 0

}
.

This choice is suitable for flow in bounded region,
but it is not right in the case at hand.
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Steady-State Solutions: Time-Periodic Bifurcation

Actually, bounded invertibility of

ω0
d

dτ
− L

in a class of 2π-periodic functions requires, in
particular, bounded invertibility of L.

For flow in bounded domain, the operator L,
defined on X ≡ W 2,2(Ω) ∩ D1,2

0 (Ω) has a purely
discrete spectrum Spp(L), so it is enough to assume
0 6∈ Spp(L).

For flow past an obstacle, 0 is in the essential
spectrum of L (Babenko ’82, Neustupa ’06) and
bounded invertibility is no longer guaranteed.
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v = v + (v − v) := v + w ; v := 1
2

∫ π

−π v(t) dt

(v=average and w=oscillatory component). Then,

ω0
dv

dτ
−L(v) = N(µ, δ, v) , in Y , v(τ) = v(τ+2π) ,

is split as a coupled “elliptic-parabolic” system

L1(v) = N1(µ, δ, v, w)

ω0
dw

dτ
− L2(w) = N2(µ, δ, v, w) , w = 0 ,

L1 : w ∈ X(Ω) 7→
∆w−λ0(∂1w+u0 · ∇w+w · ∇u0) ∈ D−1,2

0 (Ω)
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Steady-State Solutions: Time-Periodic Bifurcation

Since L1 is Fredholm of index 0, bounded
invertibility is equivalent to

L1(w) = 0 =⇒ w = 0

that is, (λ0,u0) is not a steady bifurcation point.

As for L2, we have the following:

Lemma Sp(L2) ∩ {i R− {0}} is bounded and
constituted by a countable number of isolated
eigenvalues of finite algebraic multiplicity (a.m.)
that can only cluster at 0.
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Steady-State Solutions: Time-Periodic Bifurcation

ASSUMPTIONS

(H1) L1(w) = 0 , w ∈ X(Ω) , =⇒ w = 0

(H2) Sp(L2) ∩ {i R− {0}} = ±iω0 , with a.m. = 1 ,

(H3) As λ goes through λ0, the eigenvalues of L2

“cross” i R.
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Steady-State Solutions: Time-Periodic Bifurcation

Distributions of the Eigenvalues in 2D
R. Rannacher et al. (2012)



Steady-State Solutions: Time-Periodic Bifurcation

THEOREM 5 (GPG ’16)

(A) There is a unique (real) analytic family of
time-periodic solutions v(λ) passing through the
point (λ0,u0) ;

(B) The velocity field U of the original problem has
the following form near (λ0,u0)

U (x, τ ;λ(ε)) = u0(x) + V (x;λ0)

+ε
[
(cos τ)A1 + (sin τ)A2

]
+O(ε2) ,

with Ai ∈ W 2,2(Ω) ∩ D1,2
0 (Ω) .

(C) Bifurcation is either sub- or super-critical

.
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Steady-State Solutions: Generic Properties and Bifurcation

Updated Scenario for the Solution Manifold



Steady-State Solutions: Time-Periodic Bifurcation

An Important Question to Investigate

It is experimentally observed that in the region

320 <∼ λ <∼ 500 there is a flow transition where the

oscillations are no longer monochromatic but may
involve, instead, a finite number of modes with a
larger period.
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Steady-State Solutions: Time-Periodic Bifurcation

From the mathematical viewpoint, this means to
study time-periodic bifurcation from a time-periodic
flow.

While this problem has been widely studied in the
case of flow in a bounded domain (Ruelle & Takens,
Marsden & McCracken, Iooss, Iooss & Joseph, . . .)
it appears to be very complicated for a flow past an
obstacle.



Stability and Long-Time Behavior



Stability and Long-Time Behavior

The Stability Problem.

Which one among the great variety of solutions is
stable (and hence physically observable)? This is a
formidable question.

A sufficiently complete answer is only available for
the steady-state laminar solution, that is, the one
that exists for all λ > 0. No rigorous result is,
instead, available for stability of bifurcating
solutions.

Let
u0 = u0(λ) ∈ X(Ω) , λ > 0

be the laminar steady-state solution.
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Stability and Long-Time Behavior

A field v ∈ L∞(0, T ;H(Ω)) ∩ L2(0, T ;D1,2
0 (Ω)) all

T > 0 is in the Leray-Hopf class if satisfies
1 The “perturbation equation” (in the

distributions sense):
∂v

∂t
+ λ(e1 + u0 · ∇v + v · ∇u0)

= −λv · ∇v + ∆v −∇p

2 The Strong Energy Inequality:

‖v(t)‖2
2 ≤ ‖v(s)‖2

2−2

∫ t

s

[
λ(v·∇u0,v)+‖∇v‖2

1,2
]
dτ ,

a.a. s > 0 (including s = 0) and all t ∈ [s, T ] .



Stability and Long-Time Behavior

THEOREM (Maremonti ’85)

Let

λ∗ := sup
ϕ∈D1,2

0 (Ω)

−(ϕ · ∇u0 ·ϕ)

‖∇ϕ‖2
2

.

Then, if
λ < λ∗

all “perturbations” v in the Leray-Hopf class with
v(0) ∈ H(Ω) satisfy

‖v(t)‖2 ≤ ‖v(0)‖2 , lim
t→∞

‖v(t)‖2 = 0

namely, u0 is asymptotically stable in the L2–norm.
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Stability and Long-Time Behavior

Maremonti’s result (and many other related ones)
requires “smallness” of the steady-state.

Spectral Stability

Assume all eigenvalues of the linearized operator

L2 : w ∈ W 2,2(Ω) ∩ D1,2
0 (Ω) 7→

∆w−λ0(∂1w+u0 · ∇w+w · ∇u0) ∈ H(Ω)

have negative real part. Is the steady-state u0

asymptotically stable?

The answer is positive for flow in a bounded
domain. What for flow past an obstacle?
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Stability and Long-Time Behavior

THEOREM (Neustupa ’99, ’09, ’10, ’16)

Let µ
denote the generic eigenvalue of L2, and suppose
there exist δ1, δ2 > 0 such that

<(µ) ≤ max{−δ1,−δ2=(µ)2}

(plus another “technical” condition).

There are η, C > 0 such that if

‖v(0)‖2 + ‖∇v(0)‖2 < η,
then

‖v(t)‖2 + ‖∇v(t)‖2 < Cη , all t > 0 ;

lim
t→∞

‖∇v(t)‖2 = 0 .
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Stability and Long-Time Behavior

Fundamental Open Question:
Long-time Behavior for “Large” λ.

Given λ > 0 and v0, study the behavior as t→∞
of solutions v (in a suitable class) to:

∂tv − λ(∂1v + v · ∇v) = ∆v −∇p

div v = 0

}
in Ω× R+

v(x, t)|∂Ω = e1, lim
|x|→∞

v(x, t) = 0 , v(x, 0) = v0(x) .

The basic difficulty is that the data (e1) are
time-independent.



Stability and Long-Time Behavior

Fundamental Open Question:
Long-time Behavior for “Large” λ.

Given λ > 0 and v0, study the behavior as t→∞
of solutions v (in a suitable class) to:

∂tv − λ(∂1v + v · ∇v) = ∆v −∇p

div v = 0

}
in Ω× R+

v(x, t)|∂Ω = e1, lim
|x|→∞

v(x, t) = 0 , v(x, 0) = v0(x) .

The basic difficulty is that the data (e1) are
time-independent.



Stability and Long-Time Behavior

Fundamental Open Question:
Long-time Behavior for “Large” λ.

Given λ > 0 and v0, study the behavior as t→∞
of solutions v (in a suitable class) to:

∂tv − λ(∂1v + v · ∇v) = ∆v −∇p

div v = 0

}
in Ω× R+

v(x, t)|∂Ω = e1, lim
|x|→∞

v(x, t) = 0 , v(x, 0) = v0(x) .

The basic difficulty is that the data (e1) are
time-independent.



Stability and Long-Time Behavior

If λ is “small” (< λ0, say), then v tends to a
uniquely determined steady-state solution vS. What
happens if λ is large?

The first question is: Is there a norm, ‖ · ‖X, with
respect to which solutions are uniformly bounded:

‖v(t)‖X ≤ C(λ,v0) ?

Certainly,
‖ · ‖X 6= ‖ · ‖2 ,

that is, the kinetic energy is expected to be
unbounded even for small λ .



Stability and Long-Time Behavior

If λ is “small” (< λ0, say), then v tends to a
uniquely determined steady-state solution vS. What
happens if λ is large?

The first question is: Is there a norm, ‖ · ‖X, with
respect to which solutions are uniformly bounded:

‖v(t)‖X ≤ C(λ,v0) ?

Certainly,
‖ · ‖X 6= ‖ · ‖2 ,

that is, the kinetic energy is expected to be
unbounded even for small λ .



Stability and Long-Time Behavior

If λ is “small” (< λ0, say), then v tends to a
uniquely determined steady-state solution vS. What
happens if λ is large?

The first question is: Is there a norm, ‖ · ‖X, with
respect to which solutions are uniformly bounded:

‖v(t)‖X ≤ C(λ,v0) ?

Certainly,
‖ · ‖X 6= ‖ · ‖2 ,

that is, the kinetic energy is expected to be
unbounded even for small λ .



Stability and Long-Time Behavior

Actually, assume λ < λ0 and

‖v(t)‖2 ≤ K , K independent of t . (1)

Then, there are unbounded sequence, {tm}, and
v0 ∈ L2(Ω) (maybe depending on the sequence):

lim
m→∞

(v(tm),ϕ) = (v0,ϕ) , for all ϕ ∈ C∞
0 (Ω) .

Thus v0 = vS (steady solution corresponding to λ).
This gives vS ∈ L2(Ω). However, it is well known
that

vS ∈ Lq(Ω) , for all q > 2 , vS 6∈ L2(Ω)

and (1) is not true.
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One may thus try X = Lq(Ω) , q ∈ (2,∞).
However, the validity of the estimate

‖v(t)‖q ≤ C(λ,v0) , q ∈ [3,∞) ,

would imply the existence of global regular solutions
($1M prize!)

Therefore, we formulate:

Conjecture

‖v(t)‖q ≤ C(λ,v0) , for all t > 0 some q ∈ (2, 3).

Remark. Proving the conjecture would be of no
harm to the outstanding open problem of global
regularity.
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Stability and Long-Time Behavior

The proof of the conjecture does not seem to be
simple.

Model Problem:

∂tv + v · ∇v = ∆v −∇p

div v = 0

}
in R3 × (0,∞)

lim
|x|→∞

v(x, t) = 0 , t > 0 ; v(x, 0) = v0(x) .

Can we show

v0 ∈ Lq(Ω) =⇒ existence of v ∈ L∞(0,∞;Lq(R3)) ,

some q ∈ (2, 3) .
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Stability and Long-Time Behavior

Related Problem (“local dynamics”):

Let ψ ∈ W k,∞(0,∞), k ≥ 0 with

sup
t∈(0,∞)

|Dkψ(t)| ≤ ε0 , some “small” ε0 > 0 .

Consider the problem:

∂tv + v · ∇v = ∆v −∇p

div v = 0

}
in R3 × (0,∞)

lim
|x|→∞

v(x, t) = ψ(t)e1 , t > 0 ; v(x, 0) = 0 .

Does the problem possess a uniformly bounded (in
time), global solution? A (local) attractor?
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When ψ is a “ramp function” becoming 1 after
t = t∗

the solution exists, and tends to the uniquely
determined steady-state flow (Heywood, Shibata,
GPG ’96).
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probably, the solution will tend to a time-periodic
flow. However, this is open.
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Two Final Puzzles

LIOUVILLE, LIOUVILLE are you there?

In the 2D case –planar flow past a cylinder– even
the “simple” existence problem of a steady-state
solution for arbitrary Reynolds number is an
outstanding, long-lasting open question (Leray ’33).
That is, it is not known whether

∆v − λv · ∇v = ∇p
div v = 0

}
in Ω

v|∂Ω = 0 , lim
|x|→∞

v(x) = e1 ,

has a solution (in any “reasonable” function class)
for all λ > 0.
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The difficult part is to show that the constructed
solution satisfies also the condition at infinity:

lim
|x|→∞

v(x) = e1 .

The latter can be verified (to date) only for “small”
λ (Finn & Smith ’67, GPG ’93)

To add more interest to the problem, one can show
that, in the case of “symmetric” flow, and arbitrary
λ, there is α ∈ [0, 1] such that (Amick ’88, GPG
’04)

lim
|x|→∞

v(x) = αe1 .
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Two Final Puzzles

In 1999 I formulated a conjecture about the
following LIOUVILLE-like problem:

Let Ω = {x ∈ R2 : |x| > 1} , and let u ∈ C∞(Ω)
solve the homogeneous problem:

∆u = u · ∇u−∇φ
∇ · u = 0

}
in Ω

u|∂Ω = 0

‖∇u‖2 <∞ ,

lim
|x|→∞

Dαu(x) = 0 uniformly pointwise, all |α| ≥ 0 .
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Two Final Puzzles

Conjecture. u ≡ ∇φ ≡ 0 is the only solution.

If the conjecture is true, then the 2D exterior
steady-state problem is solvable for large λ as well.

Equivalently, if the homogeneous problem possesses
a nonzero solution, then there is λ1 > 0 such that
the 2D exterior steady-state problem does not have
a solution in any (reasonable) class for all λ > λ1.

Remark. Notice that if Ω ≡ R2 the proof of the
conjecture is well-known, trivial and useless:

∆ω − u · ∇ω = 0 =⇒ ω = 0 .



Two Final Puzzles

Conjecture. u ≡ ∇φ ≡ 0 is the only solution.

If the conjecture is true, then the 2D exterior
steady-state problem is solvable for large λ as well.

Equivalently, if the homogeneous problem possesses
a nonzero solution, then there is λ1 > 0 such that
the 2D exterior steady-state problem does not have
a solution in any (reasonable) class for all λ > λ1.

Remark. Notice that if Ω ≡ R2 the proof of the
conjecture is well-known, trivial and useless:

∆ω − u · ∇ω = 0 =⇒ ω = 0 .



Two Final Puzzles

Conjecture. u ≡ ∇φ ≡ 0 is the only solution.

If the conjecture is true, then the 2D exterior
steady-state problem is solvable for large λ as well.

Equivalently, if the homogeneous problem possesses
a nonzero solution, then there is λ1 > 0 such that
the 2D exterior steady-state problem does not have
a solution in any (reasonable) class for all λ > λ1.

Remark. Notice that if Ω ≡ R2 the proof of the
conjecture is well-known, trivial and useless:

∆ω − u · ∇ω = 0 =⇒ ω = 0 .



Two Final Puzzles

Conjecture. u ≡ ∇φ ≡ 0 is the only solution.

If the conjecture is true, then the 2D exterior
steady-state problem is solvable for large λ as well.

Equivalently, if the homogeneous problem possesses
a nonzero solution, then there is λ1 > 0 such that
the 2D exterior steady-state problem does not have
a solution in any (reasonable) class for all λ > λ1.

Remark. Notice that if Ω ≡ R2 the proof of the
conjecture is well-known, trivial and useless:

∆ω − u · ∇ω = 0 =⇒ ω = 0 .



Two Final Puzzles

Another LIOUVILLE problem.

Consider the equations

∆v − v · ∇v = ∇p
div v = 0

}
in R3

‖∇v‖2 <∞ ,

lim
|x|→∞

Dαv(x) = 0 uniformly pointwise, all |α| ≥ 0 .

Is v ≡ 0 the only solution?

Notice that, by Sobolev,

∇v ∈ L2(R3) =⇒ v ∈ L6(R3) .
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Two Final Puzzles

I formulated this problem back in 1994.
Its resolution has gained more popularity after the
paper of Seregin, Šverák et al. (2009), where it is
shown that a finite-time singularity arising from a
mild solution to the IVP generates a non-identically
zero solution in L∞((−∞, 0)× R3). (Ancient
Solution)

Since a steady-state solution is a particular ancient
solution, giving a negative answer to the Liouville
problem may provide valuable information to the
notorious regularity question.
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Some Available Main Results.

GPG ’94: v ∈ L 9
2 (R3), (v ∈ L 3n

n−1 (Rn) , n ≥ 3)

CHAE ’14: ∆v ∈ L 6
5 (R3) (⇒ v ∈ L6(R3))

SEREGIN ’16: v∈L6(R3) & v=div D , D ∈ BMO ;

KOZONO et al. ’16: v ∈ L 9
2 ,∞(R3)

Remark. Since

∇v ∈ L2(Rn) =⇒ v ∈ L
2n

n−2 (Rn) , n ≥ 3 ,

all (smooth enough) v satisfy GPG’94, n ≥ 4.
Therefore, n = 3 is the only case where an answer
to Liouville’s problem is not known.
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