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MOTIVATION 

      TO STUDY FLOW IN THE NETWORK OF HIGWAYS, 
DATA NETWORK, OR ARTERIAL BLOOD FLOW NETWORK 

CEREBRAL VASCULAR NETWORK (LEFT) & NETWORK OF HIGHWAYS IN PHILADELPHIA (RIGHT) 



MOTIVATION 

      TO STUDY THE STRUCTURAL PROPERTIES OF 
MULTI-COMPONENT NET-LIKE STRUCTURES SUCH AS 

TISSUE SCAFFOLDS IN BIOMATERIALS (LEFT) & CARBON NANOTUBES IN MATERIALS SCIENCE(RIGHT) 



MOTIVATION 

      TO STUDY THE STRUCTURAL PROPERTIES OF 
MULTI-COMPONENT NET-LIKE STRUCTURES SUCH AS 

BRIDGES, CRANES, BUILDINGS MADE OF METALLIC FRAME STRUCTURES 



MOTIVATION 

      TO STUDY THE STRUCTURAL PROPERTIES OF 
MULTI-COMPONENT NET-LIKE STRUCTURES SUCH AS 

ENDOVASCULAR STENTS 



Hyperbolic net/network is a term that will be used to 
describe  a physical problem modeled by hyperbolic  
conservation laws defined on a collection of 1D domains  
forming a graph.  

Hyperbolic nets and networks differ only in that  
hyperbolic nets do not have an a priori association  
with flow (e.g., stent (net) vs. arterial blood flow network).  

HYPERBOLIC NETS and NETWORKS 

GRAPH 
€ 

Ut + F(U)x = 0
CONSERVATION LAW 

€ 

Ut + F(U)x =G(U)
BALANCE LAW 

EDGE 

VERTEX 



HYPERBOLICITY 

€ 

Ut + F(U)x = 0,  t > 0,x ∈ R
U = (x,t) −  state variable
U ∈ Rn,   F :Rn → Rn

F −  smooth function

A conservation law                         is said to be  
HYPERBOLIC if the eigenvalues of the Jacobian  
matrix F’(U) are all real. 

(Same definition holds for a balance law                              )  € 

Ut + F(U)x = 0

€ 

Ut + F(U)x =G(U)



EXAMPLE: THE NONLINEAR WAVE SYSTEM 

€ 

utt = ( f (u)ux )x,     f (u) > 0

€ 

ut = w
vt = wx

wt = ( f (u)v)x

€ 

λ0 = 0,

λ1,2 = ± f (u),  

€ 

(w := ut ,    v := ux )

€ 

Ut + F(U)x =G(U)System:                                          where  

€ 

U =

u
v
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Jacobian matrix: 

€ 

F '(U) =

0 0 0
0 0 −1

f '(u)v − f (u) 0
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Eigenvalues of the Jacobian:  

SYSTEM IS HYPERBOLIC 
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F '(U) − λI =

−λ 0 0
0 −λ −1

f '(u)v − f (u) −λ
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  EXAMPLE: WAVE PROPAGATION IN A 3D NET 
MODELED BY THE NONLINEAR WAVE EQUATION 

slow motion fast motion 

utt=(f(u)ux)x 

f(u)=0.5+u2 

ut= w 
vt = wx 
wt= (f(u)v)x 

Numerical simulation: 
FEM (with P1) 

initial condition 

with J. Tambaca 



•  GEOMETRY: the physical domain is multi-component,  
  and net-like, which can be modeled as a graph  

•  PHYSICS: the physical/biological problem that holds on 
  each domain component (edge of the graph) can be  
  modeled by 1D hyperbolic conservation (or balance) laws. 

COMMON PROPERTIES OF MOTIVATING PROBLEMS: 

GRAPH 

€ 

Ut + F(U)x = 0
CONSERVATION LAW 

€ 

Ut + F(U)x =G(U)
BALANCE LAW 

EDGE 

VERTEX 

€ 

Ut + F(U)x = ε(D(U)Ux )x
VISCOUS CONSERVATION LAW 



TISSUE SCAFFOLDS IN BIOMATERIALS (LEFT) & CARBON NANOTUBES IN MATERIALS SCIENCE(RIGHT) 

     EXAMPLE: STRUCTURAL PROPERTIES OF 
VISCOUS GELLS, TISSUE SCAFFOLDS, OR CARBON 
                                NANOTUBES 

€ 

Ut + F(U)x = ε(D(U)Ux )x
VISCOUS-HYPERBOLIC CONSERVATION LAWS 



WE WILL FOCUS ON TWO EXAMPLES: 

•  MODELING OF ENDOVASCULAR STENTS AS 
  AN EXAMPLE OF A HYPERBOLIC NET PROBLEM 

•  MODELING OF THE ARTERIAL NETWORK AS 
  AN EXAMPLE OF A HYPERBOLIC NETWORK 
  PROBLEM 



       Before we continue, we need to recall some 
basic theory of nonlinear hyperbolic conservation laws. 



BASIC THEORY OF HYPERBOLIC CONSERVATION 
                                LAWS 

€ 

Ut + F(U)x = 0,  t > 0,x ∈ R
U = (x,t) −  state variable
U ∈ Rn,   F :Rn → Rn

F −  smooth function
U – conserved quantity, F – flux function (the flux of U) 

Integrate the PDE over an arbitrary interval [a,b]: 

F F F

Rate of change of u inside [a.b] Flux of u that comes in – flux of u that goes out 

BASIC THEORY OF NONLINEAR  
CONSERVATION LAWS 



CHARACTERISTICS 

Consider the Cauchy problem: 

Consider curves x = x(t) such that: 
x 

t x=x(t) 

y 

Then, along such curves, the derivative of u(t,x(t)) (as a function of t) is:  
                                             du/dt = ut + a(t,x,u) ux 

The PDE implies:   du/dt = h(t,x,u). 

Thus, along these curves, solution u of the conservation laws, satsfies an ODE! 

The curves x(t,y), y in    , satisfying: 
are called  CHARACTERISTICS. 



CHARACTERISTICS 

x 

t x1=x1(t) 

y1 

Systems:                                        

Written in quasilinear form: Ut+ F’(U) Ux = 0 
         U(0,x)=U0(x) 

The slopes of the characteristics are determined    
by the eigenvalues of the Jacobian F’: λ1,…, λn: 

Ut+ F(U)x = 0 
      U(0,x)=U0(x) 

€ 

dxi
dt

= λi,    i =1,...,n

xi(0) = yi x2=x2(t) 

y2 



EXAMPLE: Burgers Equation (scalar)  

ut+ u ux = 0 
      u(0,x)=u0(x) x 

u0(x) 
1 

1 -1 

Characteristics: dx/dt=u(t,x(t)), along which du/dt= 0 (u is constant). 

x 

t 

-1 1 

x 

u(x,1) 

1 

-1 1 



EXAMPLE: Burgers Equation (scalar)  

ut+ u ux = 0 
      u(0,x)=u0(x) x 

u0(x) 
1 

1 -1 

Characteristics: dx/dt=u(t,x(t)), along which du/dt= 0 (u is constant). 

x 

t 

-1 1 

x 

u(x,1) 

1 

-1 1 



WEAK SOLUTIONS  

Definition: A bounded and measurable function u is called a WEAK SOLUTION 
of the Cauchy problem 

With bounded and measurable initial data u0 if for every C1-function ψ

with compact support in [0,T)x      the following holds:  

Examples: 
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x 

u(x,t*) 

x 

u(x,t*) 

x 

u(x,t*) 

uL uR uR 

uR 

uL 
uL 

uL 
uL 

uL uR 

uR 

RAREFACTION   JUMP DISCONTINUITY 
(COMPRESSION SHOCK) 

JUMP DISCONTINUITY 
 (EXPANSION SHOCK) 

t t 

F

ut+ F(u)x = 0 
      u(0,x)=u0(x) 

RIEMANN 
PROBLEM: 

€ 

u0(x) =
uL ,   x < 0
uR ,   x < 0
 
 
 



WEAK SOLUTIONS 

Examples: 
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u(x,t*) 
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u(x,t*) 

uL uR uR 
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RAREFACTION   JUMP DISCONTINUITY 
(COMPRESSION SHOCK) 

JUMP DISCONTINUITY 
 (EXPANSION SHOCK) 

t t 

€ 

For convex F, rarefaction wave solution :

u(x, t) =

uL ,   x < F '(uL )t
v(x / t),  F '(uL )t ≤ x ≤
uR ,   x > F '(uR )t

 

 
 

 
 

F '(uR )t

where v(ξ) is the solution of F '(v(ξ)) = ξ .

€ 

Shock wave (jump discontinuity) :

u(x, t) =
uL ,   x < st
uR ,   x > st
 
 
 

where s is the shock speed.



WEAK SOLUTIONS 

x x 

x 

u(x,t*) 

x 

u(x,t*) 

uR uL 
uL 

uL 
uL uR 

uR 

  JUMP DISCONTINUITY 
(COMPRESSION SHOCK) 

JUMP DISCONTINUITY 
 (EXPANSION SHOCK) 

JUMP DISCONTINUITY: 

-s(uR-uL)+(F(uR)-F(uL))=0 

t t 

F

Rankine-Hugoniot Condition 
        (Jump Condition) 

Definition: A bounded and measurable function u is called a WEAK SOLUTION 
of the Cauchy problem 

With bounded and measurable initial data u0 if for every C1-function ψ

with compact support in [0,T)x      the following holds:  

ut+ F(u)x = 0 
      u(0,x)=u0(x) 



WEAK SOLUTIONS 

Example: 
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u(x,t*) 
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RAREFACTION JUMP DISCONTINUITY 
 (EXPANSION SHOCK) 
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RIEMANN 
PROBLEM: 
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u0(x) =
uL ,   x < 0
uR ,   x < 0
 
 
 

Definition: A bounded and measurable function u is called a WEAK SOLUTION 
of the Cauchy problem 

With bounded and measurable initial data u0 if for every C1-function ψ

with compact support in [0,T)x      the following holds:  

ut+ F(u)x = 0 
      u(0,x)=u0(x) 
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u(x,0) 

uL 

uR 



WEAK SOLUTIONS 
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Example: 

Definition: A bounded and measurable function u is called a WEAK SOLUTION 
of the Cauchy problem 

With bounded and measurable initial data u0 if for every C1-function ψ

with compact support in [0,T)x      the following holds:  

ut+ F(u)x = 0 
      u(0,x)=u0(x) 

x 

t 

uL uR 

RAREFACTION 
x 

u(x,t*) 

uL 

uR 

x 

u(x,0) 

uL 

uR 



WEAK SOLUTIONS 
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u(x,t*) 
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uL 

uR 

JUMP DISCONTINUITY 
 (EXPANSION SHOCK) 

  NOT STABLE 
 UNDER SMALL 
PERTURBATION 
(NON-PHYSICAL) 

t 

F

Examples: 

Definition: A bounded and measurable function u is called a WEAK SOLUTION 
of the Cauchy problem 

With bounded and measurable initial data u0 if for every C1-function ψ

with compact support in [0,T)x      the following holds:  

ut+ F(u)x = 0 
      u(0,x)=u0(x) 
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RAREFACTION 
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SHOCK ADMISSIBILITY (ENTROPY CRITERIA) 

LAX ENTROPY CONDITION: A discontinuity propagating at speed s, 
given by the Rankine-Hugoniot condition 

Satisfies the entropy condition if  

                                       F’(uL) > s > F’(uR). 

(Note that F’ is the characteristic speed.) 

-s(uR-uL)+(F(uR)-F(uL))=0 

x 

t 

uR uL 



EXISTENCE OF A WEAK SOLUTION 
(Glimm (1965), Lax (1953), Dafermos (1972), Bressan, Holden&Risebro, Serre, Smoller, DiPerna) 

Functions of bounded Total Variation:                       ,     subset of  



EXISTENCE OF A WEAK SOLUTION 
Theorem (GLOBAL EXISTENCE OR WEAK SOLUTIONS): Assume that the system 

is strictly hyperbolic, and that each characteristic field is either linearly degenerate 
or genuinely nonlinear. Then there exists a constant δ0>0 such that, for every 
initial data in L1(R) with 
                                        Tot. Var.  {u0} < δ0 
the Cauchy problem has a weak solution defined for all t > 0. 

ut+ F(u)x = 0 
      u(0,x)=u0(x) 



EXISTENCE OF A WEAK SOLUTION 

Main ideas of the proof:  based on the wave-tracking algorithm. 
Main steps of the wave-tracking algorithm: 
        (1) approximate initial data with piece-wise constant functions 
        (2) solve at every point of discontinuity the corresponding Riemann problem 
        (3) approximate rarefaction waves with a fan of small shocks to get a  
              piece-wise constant function until two waves interact 
        (4) repeat the process inductively starting with interaction times 
        (5) prove that the functions so constructed converge to a limit function, and that 
              the limit function is an entropy solution 

Theorem (GLOBAL EXISTENCE OR WEAK SOLUTIONS): Assume that the system 

is strictly hyperbolic, and that each characteristic field is either linearly degenerate 
or genuinely nonlinear. Then there exists a constant δ0>0 such that, for every 
initial data in L1(R) with 
                                        Tot. Var.  {u0} < δ0 
the Cauchy problem has a weak solution defined for all t > 0. 

ut+ F(u)x = 0 
      u(0,x)=u0(x) 



EXISTENCE OF A WEAK SOLUTION 

Main ideas of the proof:  based on the wave-tracking algorithm. 
Main steps of the wave-tracking algorithm: 
        (1) approximate initial data with piece-wise constant functions 
        (2) solve at every point of discontinuity the corresponding Riemann problem 
        (3) approximate rarefaction waves with a fan of small shocks to get a  
              piece-wise constant function until two waves interact 
        (4) repeat the process inductively starting with interaction times 
        (5) prove that the functions so constructed converge to a limit function, and that 
              the limit function is an entropy solution 

xi 

RIEMANN PROBLEM 

Theorem (GLOBAL EXISTENCE OR WEAK SOLUTIONS): Assume that the system 

is strictly hyperbolic, and that each characteristic field is either linearly degenerate 
or genuinely nonlinear. Then there exists a constant δ0>0 such that, for every 
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                                        Tot. Var.  {u0} < δ0 
the Cauchy problem has a weak solution defined for all t > 0. 

ut+ F(u)x = 0 
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EXISTENCE OF A WEAK SOLUTION 

Main ideas of the proof: based on the wave-tracking algorithm. 
Main steps of the wave-tracking algorithm: 
        (1) approximate initial data with piece-wise constant functions 
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Theorem (GLOBAL EXISTENCE OR WEAK SOLUTIONS): Assume that the system 

is strictly hyperbolic, and that each characteristic field is either linearly degenerate 
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initial data in L1(R) with 
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ut+ F(u)x = 0 
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x 

t 

A wave-front tracking approximation 

t1 

t2 



The algorithm produces a sequence of approximate solutions.  
Convergence of the sequence is proved by a compactness argument, 
Based on uniform bounds of the Total Variation. 
More precisely, one needs to be able to control, via estimates: 

         (1) the number of waves 
         (2) the number of interactions between waves 
         (3) the total variation of the approximate solution 

These estimates are trivial in the scalar case (single equation) since 
the number of waves decreases, as does the Total Variation of  
the solution.  

In the systems case, due to the presence of more than one  
characteristic family, one needs to introduce simplified solutions to 
Riemann problems to be able to bound wave interactions between 
different families. The Total Variation increases in time, but only in  
the lower (quadratic) order contributions, and the control of over the 
Total Variation is obtained via the decrease in the Glimm’s functional.  



References: 

Cauchy Problems: Dafermos (J Math Anal Appl, 1972), DiPerna (1976), Bressan (1992), 
               Baiti and Jenssen (1998), Holden and Risebro (2002) 

Cauchy Problems 
for Balance Laws:  Amadori, Gosse and Guerra (2002) 

Initial-Boundary 
Value Problems:  Amadori and Colombo (1997), Donadello and Marson (2007)  

Most recent summary with important references:  
Alberto Bressan “Open questions in the theory of one-dimensional hyperbolic conservation  
laws,” IMA Volumes in Mathematics and its Applications, Volume 153, 1-23, 2011 (Springer) 



WEAK SOLUTION TO NETS AND NETWORK  
                          PROBLEMS 

THERE IS NO GENERAL THEORY FOR EXISTENCE OF SOLUTIONS 
      TO NONLINEAR HYPERBOLIC NET/NETWORK PROBLEMS! 

NEED YOUNG, TALENTED MATHEMATICIANS TO WORK IN THIS AREA  

The main difficulties stem from the analysis of the wave interactions at 
net’s vertices. 

Cauchy problem: characteristics carrying information 
about solution extend to infinity. 

Initial-boundary value problems: characteristics hit the  
boundary. If the boundary data is not “consistent” with the 
solution, a reflected wave forms. 

Net/network problems: characteristics hit vertices, but the 
value of the solution at a vertex is NOT KNOWN a priori, 
but rather it depends on the solution ITSELF! 
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Example: 3D NET (CUBE) 

Characteristic structure: 

Solution at the vertex 
depends on the solution 
on the entire net and on 
the coupling conditions 
at the vertex. 

EDGE 1 

EDGE 2 
EDGE 3 

VERTEX 

Suppose that on  
each edge, the nonlinear 
wave equation holds 
(modeling vibrations of 
each edge as a nonlinear string). 

EDGE 1 

EDGE 2 

EDGE 3 



          WAVE PROPAGATION IN A 3D NET 
MODELED BY THE NONLINEAR WAVE EQUATION 

slow motion fast motion 

utt=(f(u)ux)x 

f(u)=0.5+u2 

ut= w 
vt = wx 
wt= (f(u)v)x 

Numerical simulation: 
FEM (with P1) 

initial condition 

with J. Tambaca 



with J. Tambaca 

Propagation of waves for a linearized problem, and the 
interaction of waves at net’s vertices will be explicitly  
calculated later.  

slow motion fast motion initial condition 



THEORETICAL STUDY OF SOLUTIONS 
            (NETs and NETWORKS) 

   1. The TV increases to the leading order, not to the lower, quadratic order.  
        It was shown* that no total-variation-type functional is decreasing along  
        the solutions in nets with loops, or when the characteristic condition is  
        violated.  

    2. Estimating the number of waves interacting at each vertex is nontrivial. 
        In nets and networks, the number of wave interactions at vertices 
        may increase without a bound (e.g., in graphs with loops, or if 
        the non-characteristic condition is not satisfied).  

 3. One needs an a priori bound on the value of the solution at each vertex 
        to be able to use a compactness argument to establish convergence. 



4. Solution estimates at vertices need to be done for a set of  
    multi-Riemann problem data, the solutions of which are all coupled 
   at the vertex via the physical (mathematical) coupling conditions.  



References: 
* 



More details exemplifying the main difficulties in  
the analysis and numerical simulation of net/network 
problems will be presented later in the  
lectures by considering some simplified problems 
associated with our two main examples. 



BACK TO TWO EXAMPLES: 

•  MODELING OF ENDOVASCULAR STENTS AS 
  AN EXAMPLE OF A HYPERBOLIC NET PROBLEM 

•  MODELING OF THE ARTERIAL NETWORK AS 
  AN EXAMPLE OF A HYPERBOLIC NETWORK 
  PROBLEM 



•  STENT: MESH TUBE THAT IS INSERTED INTO A NATURAL CONDUIT 
OF THE BODY TO PREVENT OR COUNTERACT A DISEASE-INDUCED 
LOCALIZED FLOW CONSTRICTION  

•  USED IN THE CARDIOVASCULAR SYSTEM, TRACHEOBRONCHIAL, 
BILIARY AND UROGENITAL SYSTEM 

•  STENTS PLAY CRUCIAL ROLE IN TREATMENT OF CORONARY 
ARTERY DISEASE  

with J. Tambaca, M. Kosor 
       Dr. Paniagua, Dr. Fish 

ENDOVASCULAR STENTS 





•   WHICH STENT IS APPROPRIATE FOR A GIVEN LESION? 

•   WHICH STENTS ARE APPROPRIATE FOR TORTUOUS GEOMETRIES? 

•   WHAT IS THE OPTIMAL STENT DESIGN FOR THE CATHETER-BASED 
   AORTIC VALVE REPLACEMENT? 

•  WHAT IS THE STENT’S LONGITUDINAL STRAIGHTENING (BENDING 
   RIGIDITY) AND HOW DOES IT DEPEND ON ITS GEOMETRY? 

•  LONGITUDINAL EXTENSION/SHORTENING DURING PULSATION? 

•  BIOCOMPATIBILITY and RESTENOSIS 

OPEN QUESTIONS 
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J. Hao, T.W. Pan, S. Canic, R. Glowinski, D. Rosenstrauch. A Fluid-Cell Interaction and 
Adhesion Algorithm for Tissue-Coating of Cardiovascular Implants.  
SIAM J Multiscale Modeling and Simulation 7(4) 1669-1694 (2009)  



LARGE CARDIOVASCULAR LITERATURE 
•  CASE REPORTS 
•   Zarins, Mehta, Gyongyosi, Rieu, Sainsous,Ormiston, Webster, Dixon, Post, Kuntz, Mirkovitch,  
     Sigwart, Garasic, Edelman,  Rogers, Kastrati, Sigwart, Dyet, Watts, Ettles, Schomig, Rogers, 
     Tseng, Edelman, Squire, Gruntzig, Mayler, Hanna,… 

MODERATLY LARGE ENGINEERING LITERATURE 
•  SIMULATIONS USE 3D COMMERCIAL SOFTWARE 
•  Moore, Timmins, Berry, Dumoulin, Taylor, Bedoya, Schmidt, Behrens, Cochelin, Holzapfel, Gasser,  
   Stadler, Magliavacca, Petrini, Colombo, Auricchio, Hoang, … 

DRAWBACKS: 
• 3D simulation of each stent strut is computationally very expensive 
• thin and long structure: need extremely fine mesh to achieve 
  reasonable accuracy (view 3Dstent) 
•  commercial software uses “black box” approach: do not know which models are used 
• computationally prohibitive to include dynamic 3D stent modeling in a fluid-structure        
interaction solver  

MECHANICAL PROPERTIES OF STENTS 

HELPED UNDERSTAND MANY STENT PERFORMANCE FEATURES!!!  



LARGE CARDIOVASCULAR LITERATURE 
•  CASE REPORTS 
•   Zarins, Mehta, Gyongyosi, Rieu, Sainsous,Ormiston, Webster, Dixon, Post, Kuntz, Mirkovitch,  
     Sigwart, Garasic, Edelman,  Rogers, Kastrati, Sigwart, Dyet, Watts, Ettles, Schomig, Rogers, 
     Tseng, Edelman, Squire, Gruntzig, Mayler, Hanna,… 

MODERATLY LARGE ENGINEERING LITERATURE 
•  SIMULATIONS USE 3D COMMERCIAL SOFTWARE 
•  Moore, Timmins, Berry, Dumoulin, Taylor, Bedoya, Schmidt, Behrens, Cochelin, Holzapfel, Gasser,  
   Stadler, Magliavacca, Petrini, Colombo, Auricchio, Hoang, … 

DRAWBACKS: 
• 3D simulation of each stent strut is computationally very expensive 
• thin and long structure: need extremely fine mesh to achieve 
  reasonable accuracy (view 3Dstent) 
•  commercial software uses “black box” approach: do not know which models are used 
• computationally prohibitive to include dynamic 3D stent modeling in a fluid-structure        
interaction solver  

MECHANICAL PROPERTIES OF STENTS 

HELPED UNDERSTAND MANY STENT PERFORMANCE FEATURES!!!  

NEED FOR SIMPLIFIED, REDUCED MODELS 
(MULTI-COMPONENT, NET-BASED MODELS) 



MODELING A STENT AS A HYPERBOLIC NET 
                         MAIN IDEAS: 

•  DIMENSION REDUCTION: approximate the mechanical 
  properties of each 3D slender stent strut by the 1D curved 
  rod model 

CURVED ROD 
€ 

Ut + F(U)x =G(U)

State variable U: captures the location of the middle line, 
and the rotation of the cross-sections 



MAIN IDEAS (CONTINUED): 

•  GEOMETRY : define how 1D curved rods form a graph in 3D 

•  MECHANICS OF CONTACT: define the contact conditions 
  at graph’s vertices defining the physics of contact, i.e., how  
  curved rods (stent struts) meet (interact) at each vertex  
  forming a graph (net) in 3D. 



MODELING A STENT AS A HYPERBOLIC NET:  
                           SUMMARY 

1.  GEOMETRY: describing how individual components, such as 
       stent struts, comprise a global net structure, such as stent. 

2.  PHYSICS: describing the mechanical properties of each  
       individual net component (stent strut) 

3.  COUPLING CONDITIONS: describing the geometry and 
      mechanics of contact between the net components, thereby  
      forming a hyperbolic net in 3D consisting of 1D components.  



  STENT AS A HYPERBOLIC NET:  
DEFINITION OF A NET GEOMETRY 

TOPOLOGY: 
Net N   = (V  , E ): non-directed graph 
V   = set of graph vertices  
E   = family of non-ordered pairs of vertices (v,w) 
          (nE – number of edges) 

GEOMETRY:  defined via: 
(1) 1D parameterization Pi of each edge; 
      e.g., for a straight edge between v and w:                                  

(2) definition of the normal and bi-normal vector functions defined at each point of 
the 1D net edge 

€ 

vertex edge 

s=parameter 



(1) 1D parameterization of each edge of a stent: 

Denote by ei
     E  the i-th edge. The parameterization Pi of ei  

is defined via a smooth, injective mapping 
  Pi :[0, li ]         ei 

(Here:  li is the edge length, and Pi is the natural parameterization,  
i.e., the unit length parameterization) 
Stent struts lie on a (virtual) cylindrical surface, and so Pis can be 
defined via a projection onto the cylindrical surface of the straight rods 

€ 

∈

(2) Definition of the normal and bi-normal vector functions: 

€ 

ni,bi − are smooth functions  

€ 

ni,bi : [0,li]→ R3 
such that ∀s∈ [0,li] we have (Pi,ni,bi)∈ SO(3)

We define: 

where P is the orthogonal projection with the standard scalar product  
onto axis of symmetry of the stent cylinder (aligned with e3) 

e3 
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(2) Definition of the normal and bi-normal vector functions: 

€ 

ni,bi − are smooth functions  

€ 

ni,bi : [0,li]→ R3 
such that ∀s∈ [0,li] we have (Pi,ni,bi)∈ SO(3)

We define: 

where P is the orthogonal projection with the standard scalar product  
onto axis of symmetry of the stent cylinder (aligned with e3) 

e3 

THE STENT NET DOMAIN: 

€ 

Ω =∪
i=1

nE
P i(0,li)



STENT AS A HYPERBOLIC NET:  
               PHYSICS 

 MECHANICAL PROPERTIES OF STENT STRUTS 

STRUT DEFORMATION: dominant in bi-normal direction 

STENT STRUTS: slender bodies        lower dimensional theories 

ANTMAN – COSSERAT CURVED ROD MODEL 

captures: deformation of the middle line in all 3 spatial directions + 
                rotation of the cross-sections of the curved rod 



THE ANTMAN-COSSERAT CURVED ROD MODEL 
             FOR ONE STENT STRUT (ONE NET EDGE)! 

HYPERBOLIC BALANCE LAW 

STATE VARIABLE: 21 UNKNOWNS 



THE ANTMAN-COSSERAT CURVED ROD MODEL 

HYPERBOLIC BALANCE LAW 

STATE VARIABLE: 21 UNKNOWNS 

EVOLUTION OF THE CROSS-SECTIONS 

COMPATIBILITY AMONG 2ND ORDER DERIVATIVES 

BALANCE OF ANGULAR AND LINEAR MOMENTUM 

    CONSTITUTIVE EQ.  
(HYPERELASTIC MATERIAL) 



The model is in the form 

BALANCE LAW 

Need to verify if the model is hyperbolic. 

Hyperbolic conservation laws have certain common solution 
properties that can be used to study solutions of hyperbolic 
net problems. 

THE ANTMAN-COSSERAT MODEL 



• 21 X 21 SYSTEM 

•  HYPERBOLICITY IS ASSOCIATED WITH THE FORM OF CONSTITUTIVE EQS.  

MATHEMATICAL PROPERTIES OF THE SYSTEM 

POSITIVE DEFINITE HYPERBOLICITY 

Antman*: physically reasonable hyperelastic materials have positive definite 

* S.S. Antman “Nonlinear problems of elasticity,” Springer 2005. 

• EIGENVALUES OF THE JACOBIAN: 9 ARE ZERO, 12 ARE               ,  ,   

€ 

ut = w
vt = wx

wt = ( f (u)v)x



MATHEMATICAL STRUCTURE IS SIMILAR TO  
THE NONLINEAR WAVE EQUATION SYSTEM 

€ 

utt = ( f (u)ux )x,     f (u) > 0

€ 

ut = w
vt = wx

wt = ( f (u)v)x

EIGENVALUE OF THE JACOBIAN F’(U):  

€ 

λ0 = 0, λ1,2 = ± f (u),   f (u) > 0

(no spatial derivative) 

(compatibility of 2nd order partial deriv.) 

(balance of forces) 

€ 

Ut + F(U)x =G(U)SYSTEM IS OF THE FORM: 

REAL EIGENVALUES: SYSTEM IS HYPERBOLIC 



THE COUPLING CONDITIONS 
        AT NET’s VERTICES 

VERTEX 

Two types of coupling conditions are physically reasonable and  
are consistent with the global weak formulation of the problem: 

 1. KINEMATIC COUPLING CONDITION: continuity of 
     velocities of middle lines and of cross-sections at each vertex. 

 2. DYNAMIC COUPLING CONDITION: the sum of all contact  
     forces at each vertex is zero, and the sum of all contact  
     moments at each vertex is zero. 

VERTEX 

J. Tambaca, I. Velcic,  Derivation of the nonlinear bending–torsion model for a junction of elastic rods.  
                                    Proceedings of the Royal Society of Edinburgh. A: Mathematics. Accepted. (justif. curved rods) 
Dominique Blanchard, Georges Griso, Asymptotic behavior of structures made of straight rods. Submitted. (justification; straight rods) 



EXAMPLE: THE NONLINEAR WAVE EQUATION 

Consider an initial-boundary value problem for  
the nonlinear wave equation on a simple net 
consisting of  m edges connected at one vertex V: 

€ 

utt = ( f (u)ux )x,     f (u) > 0
u(x,0) = u0(x)
ut (x,0) = u1(x)
Boundary conditions at vertices V1,...,Vm

The set of all vertices V    ={V,V1,…,Vm}. The set of all edges E  ={{V,V1},…,{V,Vm}}. 

Parameterize all the edges so that they “begin” at V, and “end” at Vi: 

€ 

Pi(s) =V + s(Vi −V ) /h,   s∈ (0,h)

V 

(Recall: u – displacement of a vibrating string, ut- velocity) 

Initial conditions 



CONTACT CONDITIONS AT VERTEX V: 

(1) THE KINEMATIC CONTACT CONDITION: 

€ 

u1 = ...= um
(here      is the limiting value of      at vertex V, on      )  

€ 

ui

€ 

u

€ 

ei
This also implies:                               (continuity of velocity at V)  

€ 

(ut )1 = ...= (ut )m

(2) THE DYNAMIC CONTACT CONDITION: 

Contact force:  

€ 

f (u)ux
Sum of contact forces = 0 at V: 

€ 

( f (u)ux )i = 0
edges
i=1

nE

∑



WEAK FORMULATION         

The problem: 

€ 

utt = ( f (u)ux )x,   on  e1

           ....
utt = ( f (u)ux )x,   on  em

with initial and boundary conditions defined for each      . 

€ 

ei

V 

Recall, the boundary conditions at V are the coupling (contact) conditions. 

We multiply each equation by a test function      defined on     , and then 
sum over all the edges defining the net domain                     , where 
Pi is a parameterization of the edge      :   

€ 

φi

€ 

ei

€ 

Ω =∪
i=1

nE
P i(0,li)

€ 

ei

€ 

{utt − ( f (u)ux )x}iφi
i=1

nE

∑ = 0



Define the test space for the displacement: 

KINEMATIC COUPLING COND. 

After the integration by parts:  



Define the test space for the displacement: 

KINEMATIC COUPLING COND. 

After the integration by parts:  

Kinematic coupling condition  
embedded in the test space 
implies that all            have the 
same value (at V)  

€ 

φi(0)



Define the test space for the displacement: 

KINEMATIC COUPLING COND. 

After the integration by parts:  

Kinematic coupling condition  
embedded in the test space 
implies that all            have the 
same value (at V)  

€ 

φi(0)
DYNAMIC COUPLING 
CONDITION 

=0 



Define the test space for the displacement: 

KINEMATIC COUPLING COND. 

After the integration by parts:  

Kinematic coupling condition  
embedded in the test space 
implies that all            have the 
same value (at V)  

€ 

φi(0)
DYNAMIC COUPLING 
CONDITION 

=0 

Boundry conditions at outer 
vertices. 



WEAK FORMULATION 

supplemented with the initial conditions 



WEAK FORMULATION 

supplemented with the initial conditions 

This formulation is particularly suitable for a FEM  
         approximation of the net problem. 



           WAVE PROPAGATION IN A 3D NET 
MODELED BY THE NONLINEAR WAVE EQUATION 

slow motion fast motion 

utt=(f(u)ux)x 

f(u)=0.5+u2 

ut= w 
vt = wx 
wt= (f(u)v)x 

Numerical simulation: 
FEM (with P1) 

initial condition 

with J. Tambaca 

WAVE INTERACTIONS AT VERTICES FORM A MOVING BOUNDARY PROBLEM 



 FINDING SMOOTH SOLUTION USING 
THE METHOD OF CHARACTERISTICS 

The linear wave equation:  

Change of variables:                                 obtain first-order system: 

System in quasilinear form: 

Jacobian of the flux function 

Eigenvalues of the Jacobian:  



We have 2 families of characteristics: 

x 

t 

Eigenvectors of the Jacobian matrix: 



To study (smooth) solutions, we can use Riemann Invariants, or Characteristic 
 Variables (generalizes to nonlinear 2x2 problems). 

Main Idea: Diagonalize the system and find which combination of the unknown 
functions satisfies an ODE along the characteristics. 

Start from  

Multiply by a left eigenvector: 

Obtain the diagonal system: 

OR:  

Define:  

For a constant-coeff. 
system we have: 



Functions       satisfy:  

Thus,        satisfies an ODE:  

Functions       are called RIEMANN INVARIANTS (CHARACTERISTIC VARIABLES).  

For the linear wave equation: 

When f(x) = 1: 

and          is constant along   



We can recover smooth solutions: 

t 

x 

λ1
 λ2


(x,t) 



t 

x 

λ1
 λ2


(x,t) 

Suppose: 
        is 0 

v0 

x Initial data for v0 



t 

x 

λ1
 λ2


(x,t) 

Suppose: 
        is 0 

v0 



EDGE 1 

EDGE 2 
EDGE 3 

VERTEX 

INTERACTION OF WAVES WITH VERTICES 

NEED TO BE ABLE TO RECOVER 6 UNKNOWNS: 

We have 3 equations from the coupling conditions: 

           1. Continuity of velocity: 

           2. Balance of forces:   

NEED 3 MORE 
CONDITIONS TO 
HAVE A WELL-DEFINED 
PROBLEM! 



EDGE 1 

EDGE 2 
EDGE 3 

VERTEX 

INTERACTION OF WAVES WITH VERTICES 

NEED TO BE ABLE TO RECOVER 6 UNKNOWNS: 

We have 3 equations from the coupling conditions: 

           1. Continuity of velocity: 

           2. Balance of forces:   

NEED INFORMATION FROM 
PDE ABOUT THE 
WAVES COMING TO  
THE VERTEX. 



EDGE 1 

EDGE 2 

EDGE 3 

Use Riemann Invariants along the characteristic approaching the vertex. 



Obtain a system of 6 equations in 6 unknowns: 

(double check the signs ) 



Nonlinear 2x2 problems with smooth solutions can 
be “solved” using Riemann Invariants. 

Riemann Invariants do not exist for general nxn systems. 
Also, when shocks develop, even in 2x2 systems, 
Riemann Invariants cannot be used. 

There is no general theory about how to construct  
the solutions at vertices. 
One suggestion (Piccoli et al.) is to solve all possible 
Riemann problems at each vertex, and chose the values 
of the solution at the vertex so that the RP solutions only 
contain the waves traveling 
to the interior of the edge 
(avoids loss of information). 



WEAK FORMULATION 

supplemented with the initial conditions 

Our suggestion: 

•  incorporates one coupling condition in the solution space 
•  enforces the other coupling condition in the weak sense 
•  this approach incorporates, at the same time, both the coupling 
  condition and the information from the PDE simultaneously 

This approach leads to a nonlinear problem at each vertex that is not  
necessarily well-posed, especially for large systems, and is not easily  
solved numerically even when there exists a unique solution! 



STENT AS A HYPERBOLIC NET 

€ 

Ω =∪
i=1

nE
P i(0,li)

ANTMAN-COSSERAT  
            MODEL 
(on edges/stent struts) CONTACT CONDITIONS: 

1.  CONT. OF VEL. 
2.   BALANCE OF FORCES 
      AND MOMENTS 
          (at vertices) 

Problem (example): STENT RESPONSE TO UNIFORM PRESSURE LOAD 

Pi – parameterization of edges of  N   = (V  , E )  

Used similar ideas for the stent problem, formulated in the weak form similar to the nonlinear wave system.  



COMPARISON WITH FULL 3D SIMULATIONS 

•  STATIC PROBLEM 
•  LINEARIZED ANTMAN-COSSERAT MODEL: 
   small deformation of an already expanded  
   stent 
•  3D SIMULATION: FreeFem++, P2 elements; 
   computational mesh h=1/10,…1/60. 
•  1D SIMULATION: in-house FEM code in C++ 



COMPARISON WITH FULL 3D SIMULATIONS 

30x displacement magnification 

      mesh 
diff 

h=1/10 
19705 nodes 

h=1/20 
24868 nodes 

h=1/30 
51549 nodes 

h=1/40 
64826 nodes 

h=1/50 
123921 nodes 

h=1/60 
211337 nodes 

0.07563 0.046564 0.0381521 0.0314075 0.0277053 0.0258485 

3D simulations converge with mesh refinement to 1D solution 
with  #3D nodes: 211337  v.s.   #1D nodes: 474 for 2.7% diff. 

QUANTITATIVE DIFFERENCE BETWEEN 1D and 3D DISPLACEMENT FOR 2 ZIG-ZAGS 

1D SIMULATION 

3D SIMULATION 



            THE REDUCED MODEL PROVIDES: 

•  SIGNIFICANT COMPUTATIONAL SAVINGS 

•  INCREASED ACURACY in DISPLACEMENT CALCULATIONS 

•  EFFECTIVE PRESSURE-DISPLACEMENT RELATIONSHIP FROM 
  LEADING-ORDER ENERGY FORMULATION  
   (IMPORTANT for NUMERICAL FLUID-STRUCTURE INTERACT. STUDIES) 



• CORONARY STENT RESPONSE TO COMPRESSION AND TO BENDING 
          (DEFORMATION OF STENTS IN THEIR EXPANDED STATE) 

STENTS CONSIDERED: 

Palmaz by Cordis 

Express by Boston Sci. 

Cypher by Cordis 

Xience by Abbott 

Express-like stent mesh 

Palmaz-like stent mesh 

Cypher-like stent mesh 

Xience-like stent mesh 

• USING THIS APPROACH: HELPED IN OPTIMAL DESIGN OF STENT FOR 
 TRANSCATHETER AORTIC VALVE REPLACEMENT (with Private Consortium in Houston)  



Express-like stent; open cell design (strut thickness 132 µ) 

Compression 

Cypher-like stent (strut thickness 140 µ & 140/3 µ) 

Xience-like stent; open cell design (strut thickness 80 microns; CoCr) 

Uniform (Palmaz-like) stent (strut thickness 80 microns) 

Bending 



*Gyongyosi et al. Longitudinal straightening effect of stents is an additional predictor 
for major adverse cardiac events. J American College of Cardiology 35 (2000) 

CONCLUSIONS 
• Palmaz-like stent is by far the hardest stent with respect to both 
compression and bending (should not be clinically applied in tortuous geometries [*]) 

•  open-cell design provides more flexibility to bending 
(important since longitudinal straightening effect of rigid stent has been clinically  
associated with increased incidence of major adverse  cardiovascular events [*]) 

•  Express-like stent has high flexibility (bending)  while keeping  
   high radial strength (radial displacement: 0.24%) 
    (important to avoid buckling of bent stents) 

•  Xience-like stent has the smallest longitudinal extension 
  under cyclic loading (“in phase” circumferential rings; not “opposing”) 
  (clinically important when landing a stent in an “angle” area formed by a native artery) 

•  New design: more flexibility than Express with higher 
  radial strength: Cypher-like stent with open-cell design 

Xience-like 

Express-like 

pre post 

Cypher-like 

Computer-generated Cypher-like stent  
          with open cell design 



References: 



ARTERIAL BLOOD FLOW NETWORKS 

network of coronary arteries cerebral arterial network 

   human cardiovascular 
network (principal arteries) 



•  THE COMPLEXITY OF THE HUMAN CARDIOVASCULAR 
SYSTEM RENDERS THE NUMERICAL SIMULATION OF  
THE ENTIRE CARDIOVASCULAR SYSTEM USING FULL 3D  
FSI MODELS COMPUTATIONALLY PROHIBITIVE 

•  MULTI-SCALE APPROACHES HAVE BEEN DEVELOPED 
THAT COUPLE 3D SIMULATIONS OF SMALLER  
SEGMENTS WITH 1D SIMULATIONS OF LARGER 
(NETWORK) SEGMENTS (Quarteroni et al., Veneziani et al.) 

3D-1D 
COUPLING 



REDUCED 1D-BASED NETWORK MODELS 

•  CAN MODEL “BOUNDARY CONDITIONS” FOR 3D  
  SIMULATIONS 

•  CAPTURES THE FLOW OF A VISCOUS, INCOMPRESSIBLE 
  FLUID IN A STRAIGHT VESSEL WITH SMALL ASPECT 
  RATIO (axial velocity dominant; details to follow) 

•  CAPTURES THE PRESSUE AND ARTERIAL WAVE 
  PROPAGATION IN THE VASCULAR NETWORK 
  (e.g., study of blood pressure in elderly upon standing up  
   Olufsen et al.) 



BASICS FOR THE 1D BLOOD FLOW MODEL 
IN ONE COMPLIANT, CYLINDRICAL ARTERY 

Domain:  

Reference cylinder: 

Lateral boundary: 

Deformed cylinder: 

Lateral boundary: 





Basic assumptions (full model): 

•  medium-to-large arteries: blood can be modeled as a 
  viscous, incompressible, Newtonian fluid 
•  models for vessel wall dynamics: elastic/viscoelastic 
•  only radial displacement will be taken into account 
•  small displacement, and small displ. gradient: linear 
  elasticity/viscoelasticity 

Basic assumptions (dimension reduction: reduced model): 

•  long and narrow (slender) domain (artery): i.e., small 
  aspect ratio ε = R/L; 
•  axially symmetric flow 
•  constant or slowly varying vessel radius 



FULL FLUID-STRUCTURE INTERACTION MODEL  
 IN CYLINDRICAL COORDINATES 

FLUID: Navier-Stokes equations for an incompressible, viscous,  
               Newtonian fluid 

Balance of radial  
momentum 

Balance of axial  
momentum 

Conservation of mass 
(incompressibility cond) 

STRUCTURE: homogeneous, isotropic, linearly viscoelastic membrane 
                             (Kelvin-Voigt viscosity), displacing in radial direction only 

2nd Newton’s Law of Motion 
(balance of forces) 



FULL FLUID-STRUCTURE INTERACTION MODEL  
 IN CYLINDRICAL COORDINATES 

STRUCTURE: homogeneous, isotropic, linearly viscoelastic membrane 
                             (Kelvin-Voigt elasticity), displacing in radial direction only 

2nd Newton’s Law of Motion 
(balance of forces) 

Radial displacement 

Membrane acceleration 
Outside force 

Linear elasticity Pre-stress 
Viscoelasticity 



COUPLING BETWEEN THE FLUID AND STRUCTURE 

•  THE KINEMATIC CONDITION: continuity of velocity at the fluid- 
      structure interface Σ(t) (no slip)  

•  THE DYNAMIC CONDITION: balance of contact forces at the fluid- 
      structure interface Σ(t) 



COUPLING BETWEEN THE FLUID AND STRUCTURE 

•  THE KINEMATIC CONDITION: continuity of velocity at the fluid- 
      structure interface Σ(t) (no slip) 

•  THE DYNAMIC CONDITION: balance of contact forces at the fluid- 
      structure interface Σ(t) 

Normal component of fluid stress Jacobian of the Eulerian-Lagrangian tranf. 

FLUID CONTACT FORCE MEMBRANE CONTACT FORCE 



BENCHMARK PROBLEM IN FSI in BLOOD FLOW 

NAVIER-STOKES EQUATIONS FOR AN  INCOMPRESSIBLE 
VISCOUS FLUID IN  MOVING DOMAIN  

LATERAL BOUNDARY CONDITION: COUPLING BETWEEN 
FLUID AND STRUCTURE:  
1.  CONTINUITY OF VELOCITY (NO-SLIP) 
2.    BALANCE OF CONTACT FORCE 

INLET BOUNDARY  
CONDITION 

OUTLET 
BOUNDARY  
CONDITION 

INITIAL CONDITIONS 

€ 

p + ρFvz
2 /2 = P0(t) + pref

(dynamic pressure)
(normal stress)
η - given
vr = 0

€ 

p + ρFvz
2 /2 = P1(t) + pref

(dynamic pressure)
(normal stress)
η - given
vr = 0



DIMENSION REDUCTION: REDUCED MODELS 

1.  Introduce non-dimensional variables 
2.  Derive model in non-dimensional form 
3.  Use the fact that R/L =: ε is small 
4.  “Average” the equations across the “slender” direction 
      (dimension reduction; problems with closure) 
5.  Write a hierarchy of equations in terms of ε0,ε1,ε2,.. 
6.  Ignore the terms of order ε2 and smaller 
7.  Derive the reduced equations that approximate 
      the full problem to ε2 accuracy 
8.  Prove that as ε goes to 0, the full model “converges” 
      to the reduced model (error estimates) 



THE NON-DIMENSIONAL PROBLEM 

THE NON-DIMENSIONAL VARIABLES: 

•  the independent variables 

•  the dependent variables 

ASYMPTOTIC EXPANSIONS: 

Plug into the Navier-Stokes equations and ignore the terms of order ε2 or smaller. 

0<z<1 
0<r<1 

0<z<L 
0<r<R 

Energy estimates imply: 



ENERGY 

(when inertial forces dominate viscous forces) 

10% of R 

A PRIORI ESTIMATES 

where  



THE ε2 APPROX. OF THE NAVIER-STOKES EQs 
 IN NON-DIMENSIONAL FORM 



THE ε2 APPROX. OF THE NAVIER-STOKES EQs 
 IN NON-DIMENSIONAL FORM 

 HYDROSTATIC 
APPROXIMATION 

RATIO OF INERTIAL 
FORCES TO VISCOUS 
FORCES 

DESCRIBES UNSTEADY,  
OSCILLATING FLOW 



THE ε2 APPROX. OF THE NAVIER-STOKES EQs 
 IN NON-DIMENSIONAL FORM 

 HYDROSTATIC 
APPROXIMATION 

RATIO OF INERTIAL 
FORCES TO VISCOUS 
FORCES 

OSCILLATION FREQUENCY OR  
VORTEX SHEDDING FREQUENCY 



REMARKS: 

•  leading-order balance of radial momentum implies hydrostatic pressure, 
  i.e., p = p(z,t). 

•  leading order balance of axial momentum implies that viscous effects in 
  the axial direction are negligible 

•  leading order conservation of mass implies that the axial component of  
  the velocity is dominant of the radial velocity, i.e.,   =0, so that 

€ 

vr = V (ε ˜ v r
1 + ε2 ˜ v r

2 + ...) = εV ( ˜ v r
1 + ε ˜ v r

2 + ...)

€ 

˜ v r
0

while 

€ 

vz = V ( ˜ v z
0 + ε ˜ v z

1 + ...)
so that 

€ 

vr
vz

= ε



THE ε2 APPROX. OF THE BOUNDARY CONDITIONS 
       IN NON-DIMENSIONAL FORM 

THE LATERAL BOUNDARY CONDITIONS: 

INLET/OUTLET BOUNDARY DATA: 

INITIAL DATA: 



THE ε2 APPROX. OF THE BOUNDARY CONDITIONS 
       IN NON-DIMENSIONAL FORM 

THE LATERAL BOUNDARY CONDITIONS: 

Dominant fluid stress: 
normal stress 

Membrane acceleration drops out 



THE ε2 APPROX. OF THE BOUNDARY CONDITIONS 
       IN NON-DIMENSIONAL FORM 

THE LATERAL BOUNDARY CONDITIONS: 

INLET/OUTLET BOUNDARY DATA: 

INITIAL DATA: 
Initial condition for membrane  
velocity drops out. 



THE ε2 APPROX. OF THE FSI PROBLEM 

DATA: 



DIMENSION REDUCTION 

Average over the cross-section 
DEFINE: 

; ; ; 

OBTAIN THE FOLLOWING 1D REDUCED MODEL FOR      and      : 

€ 

˜ A 

€ 

˜ m 



DIMENSION REDUCTION 

Average over the cross-section 
DEFINE: 

; ; ; 

OBTAIN THE FOLLOWING 1D REDUCED MODEL FOR      and      : 

CONSERVATION OF MASS 

BALANCE OF AXIAL MOMENTUM 

€ 

˜ A 

€ 

˜ m 



The dynamic coupling condition is used to determine the pressure p = p(A,m): 

Linear, viscoelastic membrane 

Linear, elastic membrane (Law of Laplace) 



THIS SYSTEM IS NOT CLOSED! 

To close the system, the dependence of vz on r needs to be prescribed: 

γ=2 : quadratic velocity profile (Poiseuille profile)(α=4/3)

γ=9 : “plug” velocity profile (α=1.1)


γ=2  



R=2.5mm; E=100000Pa 



Axial velocity profile comparison between 1D and Full model 



THE REDUCED 1D MODEL IN DIMENSIONAL FORM 

(LINEARLY ELASTIC) 

Hunt and Timlake, T. Hughes, A. Quarteroni et al, A. Veneziani, A. Robertson,  
M. Olufsen et al, Y.C., Fung, Keener and Snyd, S. Canic et al. 



THE REDUCED 1D MODEL IN DIMENSIONAL FORM 

(LINEARLY VISCO-ELASTIC) 

Hunt and Timlake, T. Hughes, A. Quarteroni et al, A. Veneziani, A. Robertson,  
M. Olufsen et al, Y.C., Fung, Keener and Snyd, S. Canic et al. 



This reduced model holds under the following assumptions: 



MATHEMATICAL PROPERTIES OF THE 1D MODEL 

SYSTEM IN QUASILINEAR FORM: 

€ 

Ut + F '(U)Ux =G(U)

EIGENVALUES OF THE JACOBIAN F’(U): 



EIGENVALUES OF THE JACOBIAN F’(U): 

If  >=0, the system would be hyperbolic. 

THE SIGN OF  

For α=1 (plug flow): P’(A)>0 implies that the discriminant is positive 

For α=4/3 (Poiseuille): P’(A) is dominant over the remaining terms because of  
                                    the Youngs modulus of elasticity = O(105) Pa >> U=O(1) 

The system is strictly hyperbolic 
(two real, distinct eigenvalues) 



  CONSEQUENCES 

•  The system is nonlinear and hyperbolic. This implies that 
  solutions can exhibit shock waves in A, and/or m. 

   -Shock waves can be interpreted as sharp pressure/velocity 
wave fronts. Those are not physiologically observed in healthy 
humans. Sharp pressure waves can be heard through a  
stethoscope in patients with aortic insufficiency. 

  - Mathematical analysis of shock wave formation in this model* 
shows that for the inlet and outlet pressure data that corresponds 
to healthy humans, the first time the shock waves form for this  
model is 3 meters away from the heart!  

 - Mathematical analysis and numerical simulation also showed  
that for patients with aortic insufficiency, the shock wave generated 
by this model occurs  within 15 cm away from the heart. 

*Canic , S. and E. H. Kim. Mathematical Analysis of the Quasilinear Effects in a Hyperbolic Model of Blood Flow  
through Compliant Axisymmetric Vessels, Mathematical Methods in Applied Sciences, 26 (14) (2003), 1161-1186. 



1D Model: Shock Formation 



  CONSEQUENCES 

•  Boundary conditions: the structure of characteristics determines 
  which boundary conditions give rise to a well-defined problem. 

   -The eigenvalues have opposite signs. This implies that we have 
two families of characteristics: one with positive slope, and one with 
negative slope. 

- This means that 2 pieces of boundary data need to be prescribed: 
  one at the left boundary, and one at the right boundary.  
  So, a well-defined problem would have, say, pressure prescribed 
  at both ends (displacement), or flow rate at both ends, or a combination 
  of pressure and flow rate at each end (Riemann invariants). 

Canic , S. and E. H. Kim. Mathematical Analysis of the Quasilinear Effects in a Hyperbolic Model of Blood Flow  
through Compliant Axisymmetric Vessels, Mathematical Methods in Applied Sciences, 26 (14) (2003), 1161-1186. 
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  CONSEQUENCES 

•  Hyperbolicity implies that traveling waves will reflect from the  
  outlet and inlet of the tube if Dirichlet data are prescribed.  

   - These reflected waves contaminate the physiological flow. 

- Prescribing “transparent” outlet boundary conditions can minimize 
 the presence of spurious reflected waves.  
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A REDUCED MODEL WITHOUT AN AD-HOC CLOSURE 
                          Canic & Mikelic et al. 

By using homogenization theory and energy estimates one obtains*: 

•  an approximation to the zero-th order in terms of vz
0 and η0  

  where 
                vz= vz

0 + ε vz
1 + O(ε2), η = η0 + ε η1 + Ο(ε2) 

•  an ε-correction in terms of vz
1 and η1. 

Homogenization provided the correct scaling that enabled the derivation  
Of a close model that approximates the original problem to the ε2-accuracy. 

The 0th –order solution plus the ε-correction solution satisfy the original 
problem to the ε2 accuracy*.  

Canic  and Mikelic. Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in  
the study of blood flow through small arteries. SIAM Journal on Applied Dynamical Systems 2(3) (2003) 431-463. 

Canic , S. A. Mikelic, and D. Lamponi, and J. Tambaca. Self-Consistent Effective Equations Modeling Blood Flow in Medium-to-Large  
Compliant Arteries. SIAM J. Multiscale Analysis and Simulation 3(3) (2005) 559-596.  

Canic, C.J. Hartley, D. Rosenstrauch, J. Tambaca, G. guidoboni, A. Mikelic. Blood Flow in Compliant Arteries: An Effective Viscoelastic  
Reduced Model, Numerics and Experimental Validation. Annals of Biomedical Engineering. 34 (2006), pp.`575 - 592. 
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THE REDUCED EQUATIONS 

NOTE: nonlinearity due 
to the fluid-structure coupling 
dominates the nonlinearity of   
fluid advection. 

(mass) 

(momentum) 

€ 

+D ∂η
0
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 viscoelastic membrane  

Biot (1956), Mikelic (2002) 
Sanchez-Palencia (1980) 
Camassa (2002)  
Canic et al. (2005)(2006) 

nonlinear 
transport 
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diffusion 



The ε-correction: correction for the velocity: 
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THE REDUCED EQUATIONS 

1. Recover: 

2. Solve linear fixed-boundary problem: 

where 
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THE LEADING-ORDER APPROXIMATION 

•  NONLINEAR MOVING BOUNDARY PROBLEM 
•  2 SPATIAL DIMENSIONS (r,z) and TIME t 
•  BUT, THE DIMENSIONS ARE “SPLIT” SO THAT NUMERICALLY 
  AND ANALYTICALLY, 1D TECHNIQUES APPLY! 
•  THIS IS WHY WE WILL SAY THAT THIS MODEL IS 1.5 D 



NUMERICAL SIMULATION 
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• Recreate conditions in a healthy human abdominal aorta.  







linear elasticity 

viscoelasticity 

Measured pressure-diameter response 
(Armetano et al.*): 

*[1] Armentano R.L., J.G. Barra, J. Levenson, A. Simon, R.H. Pichel. Arterial wall mechanics in conscious dogs: assessment of viscous,inertial,and elastic moduli to characterize aortic wall behavior. Circ. Res. 76: 1995. 

* [2] Armentano R.L., J.L. Megnien, A. Simon, F. Bellenfant, J.G. Barra, J. Levenson.  Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension 26:48--54, 1995. 

nonlinear elasticity 

Numerical simulation using 
  the reduced (Biot) model 

in-vitro measurement 

              (viscoelastic model) 
COMPARISON WITH EXPERIMENTS 

[1] SIAM J  Multiscale Modeling and Simulation 3(3) 2005. 
[2] Annals of Biomedical Engineering Vol. 34,  2006.  
[3] SIAM J Applied Mathematics 67(1) 2006. 
coming soon: user-friendly software posted on www.math.uh.edu/~canic  (Tambaca&Kosor) 

(human femoral artery) 

LINEARLY VISCOELASTIC 
CYLINDRICAL MEMBRANE 
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EXISTENCE OF A UNIQUE MILD SOLUTION 

Kim, Canic, Guidoboni. Comm. Pure and Appl. Analysis 9 (4) 839-865 (2010) 

S. Canic, A. Mikelic, G. Guidoboni. "Existence of a Unique Solution to a Nonlinear  
Moving-Boundary Problem of Mixed type Arising in Modeling Blood Flow". IMA Mathematics 
And its Application, Volume 153:  pp 235-256 (2011) 



2. IMPLICIT FUNCTION THEOREM (HILDEBRANDT AND GRAVES): 

Assumptions:  
1.  Λ,X,Z – Banach spaces 
2.   F: Λ x X         Z defined on an open neighborhood U(λ0,x0) and F(λ0,x0) =0 
3.  Fx exists as a Frechet derivative on  U(λ0,x0)  and Fx(λ0,x0) :X         Z bijective 
4.  F and Fx continuous at (λ0,x0)  
Then: 
1.  There exist δ0>0 and δ>0 such that for every λ in Λ such that ||λ-λ0||<δ0 there is 
      exactly one x in X for which ||x-x0||<δ and F(λ,x) = 0. 
2.  If F is continuous in a neighborhood of (λ0,x0) then x is continuous in a  
      neighborhood of λ0. 

1. MAP ONTO FIXED DOMAIN (ADDITIONAL NONLINEARITY IN PDEs) 



Mapping F: 

x λ
 left hand-side of balance of momentum 

where: 

CONSTRAINT: conservation of mass (linear in γ) 
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THEOREM: Frechet derivative at (λ0,v0) is a bijective mapping from X to Z. 

where  

PROOF (MAIN STEPS):  existence of a unique (mild) solution to 



MAIN STEPS:  
1.  Existence of a unique WEAK solution  
              1a. Galerkin approximations 
              1b. Uniform energy estimates (nontrivial due to mixed hyper-deg. parab. type) 
              1c. Compactness: weak convergence (to solution) 
              1d. Uniqueness 
2. Higher regularity (energy estimates) to get to mild solution 
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THEOREM: 

THEOREM: 



THEOREM: 

EXISTENCE OF A UNIQUE MILD SOLUTION TO LINEARIZATION 
THUS, FX(λ0,x0) IS BIJECTIVE. 

+ CONTINUITY OF F and Fx at (λ0,x0)  
IFT 

    EXISTENCE FOR 
NONLINEAR PROLEM 



 BACK TO CARDIOVASCULAR NETWORKS 

1.  GEOMETRY: describing how individual components, such as 
       individual vessels, comprise a global network of arteries. 

2.  PHYSICS: derivation of models describing the physical properties  
 of each individual network component (single artery) 1D MODEL 

3.  COUPLING CONDITIONS: describing the physics of how  
      individual network components interact with each other at network’s 
      vertices.   

SIMPLE NETWORK 
      (3 arteries) 
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 CARDIOVASCULAR NETWORKS 

1.  GEOMETRY: describing how individual components, such as 
       individual vessels, comprise a global network of arteries. 

2.  PHYSICS: derivation of models describing the physical properties  
 of each individual network component (single artery) 

3.  COUPLING CONDITIONS: describing the physics of how  
      individual network components interact with each other at network’s 
      vertices.   

SIMPLE NETWORK 
      (3 arteries) 

   
   



COUPLING CONDITIONS (FOR 1D MODEL) 
      (i.e., PHYSICS OF THE COUPLING) 

TWO CONDITIONS ARE PHYSICALLY REASONABLE: 



TWO CONDITIONS ARE PHYSICALLY REASONABLE: 

   1. CONTINUITY OF PRESSURE 

                           p1 = p2 = p3  

Vessel 1 

Vessel 2 

Vessel 3 

COUPLING CONDITIONS (FOR 1D MODEL) 
      (i.e., PHYSICS OF THE COUPLING) 



TWO CONDITIONS ARE PHYSICALLY REASONABLE: 

   1. CONTINUITY OF PRESSURE 

                           p1 = p2 = p3  

   2. CONSERVATION OF MASS 

           m1 = m2 + m3 

                                ( m is the flow rate) 

Vessel 1 

Vessel 2 

Vessel 3 

COUPLING CONDITIONS (FOR 1D MODEL) 
      (i.e., PHYSICS OF THE COUPLING) 



These conditions lead to a network problem, 
similar to that one for the nonlinear wave equation. 

Inlet data 

Outlet data 

Coupling Conditions 

General existence result is open. Smooth solutions can be studied using 
Riemann Invariants. Numerical results can be obtained using different 
approaches (Finite Difference Scheme, Finite Element Method).  
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Babies delivered: 28,000 
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